论文解读:
背景
开销和隐私两大problems
移动网络在计算和通信两方面有极大的开销,如果没有激励机制,那么感兴趣的移动设备就不愿意加入联邦学习任务
以往的假设是认为所有的移动设备都会在被邀请时无条件的参与联邦学习,但是没有精心设计的补偿,自私自利的移动设备将不愿意参与
两个信息不对成
1.任务发布者不知道用于模型训练的资源量和数据大小
2.不知道移动设备的数据质量
导致: 任务发布者在为移动设备提供激励时会招致高成本
该论文采用契约理论设计了一种有效的激励机制,可用于模型具有高质量(如高精度)数据的移动设备参与联邦学习。
方法: 将贡献的资源映射成适当的报酬,数据拥有者有更高的准确性和可靠性的本地数据以及更多的资源贡献,可以从发布者获得更多的回报。(说白了就是你做的越多,工资越高)
每个数据拥有者选择其所需的合同以使其利润最大化
论文的main contribution
1.设计了有效的激励机制,在信息不对称条件下激励移动设备加入训练。
2.将本地数据的质量相关参数定义为契约模型的类型。具有更高精度和可靠本地数据的高类型数据拥有者可以获得更高的报酬
3.手写数据集进行验证所提出的机制优于现有的机制

联邦学习的计算模型
移动设备(数据所有者) N ∈ 1 , . . . N Ν∈{1,...N} N∈1,...N,其中,对于每一个数据所有者n∈N,其大小为 s n s_n sn。每个数据所有者n为本地模型训练贡献的计算资源,即CPU周期频率,表示为 f n f_n fn。单个数据training的CPU周期数为 c n c_n cn,因此,对于数据所有者n,其本地计算时间为:
c n s n f n \frac{c_ns_n}{f_n} fncnsn
那么,对于n的一次迭代CPU能耗为:
E n c m p ( f n ) = ζ c n s n f n 2 E_n^{cmp}(f_n)=ζc_ns_nf_n^2 Encmp(fn)=ζcnsnfn2
其中,ζ表示n的计算芯片组的有效电容参数
联邦学习的通信模型
局部数据质量用 ε n ε_n εn来表示, ε n ε_n εn越大,表示数据质量越好,即需要更少的局部和全局迭代,并提高模型的精度。
使用 l o g ( 1 ε n ) log(\frac{1}{ε_n}) log(εn1)来表示当全局精度固定时,局部模型更新迭代的次数。
全局迭代涉及局部迭代计算时间和局部模型更新的上行链路通信 t i m e 2 time^2 time2.
数据所有者n局部迭代时间:
T n c m p = c n s n f n T_n^{cmp}=\frac{c_ns_n}{f_n} Tncmp=fncnsn
假设: 在传输局部模型参数时,数据所有者的位置是固定的
数据所有者的传输速率为:
r n = B l n ( 1 + ρ n h n N 0 ) r_n=Bln(1+\frac{ρ_nh_n}{N_0}) rn=Bln(1+N0ρnhn)其中B是传输带宽, ρ n ρ_n ρn是n的传输速率, N 0 N_0 N0是背景噪声, h n h_n hn是数据所有者n和任务发布者之间对等链路的信道增益。
我们将局部模型更新的数据大小σ看作是一个常数,对于所有数据所有者来说,其值都是相同的。
局部模型更新的传输时间:
T n c o m = σ B l n ( 1 + ρ n h n N 0 ) T_n^{com}=\frac{σ}{Bln(1+\frac{ρ_nh_n}{N_0})} Tncom=Bln(1+N0ρnhn)σ
数据所有者n的一次全局迭代总时间:
T n t = l o g ( 1 ε 0 T n c m p + T n c o m ) T_n^t=log(\frac{1}{ε_0}T_n{cmp}+T_n^{com}) Tnt=log(ε01Tncmp+Tncom)
数据所有者n在全局迭代中传输局部模型更新所耗的能量为:
E n c o m = T n c o m ∗ ρ n = σ ρ n B l n ( 1 + ρ n h n N 0 ) E_n^{com}=T_n{com}*ρ_n=\frac{σρ_n}{Bln(1+\frac{ρ_nh_n}{N_0})} Encom=Tncom∗ρn=Bln(1+N0ρnhn)σρn
数据所有者n的总耗能为:
E n t = l o g ( 1 ε n E n c m p + E n c o m ) E_n^t=log(\frac{1}{ε_n}E_n{cmp}+E_n^{com}) Ent=log(εn1Encmp+Encom)
任务发布者的效用函数
为了吸引高质量的数据(高精度、可靠的本地数据),论文中将数据质量定义为:数据所有者n的类型,其表示为 θ n = ψ l o g ( 1 ε n ) θ_n=\frac{ψ}{log(\frac{1}{ε_n})} θn=log(εn1)

论文提出了一种利用契约理论设计的激励机制,旨在解决移动网络中联邦学习的计算和通信开销问题。通过将资源贡献与适当报酬映射,鼓励拥有高质量数据的设备参与,克服信息不对称带来的挑战。研究涵盖了联邦学习的计算和通信模型,以及任务发布者和数据所有者的效用函数。最终,通过优化问题求解最优契约,以实现任务发布者的利润最大化和数据所有者的效用最大化。
最低0.47元/天 解锁文章
3414

被折叠的 条评论
为什么被折叠?



