OpenVINO不同Batch Size不同计算引擎的benchmark评测对比

本文详细记录了在Intel N4100 CPU、集成GPU UHD600和MYRIAD NCS2上,使用OpenVINO的benchmark_app.py对Xubett964模型进行测试。结果显示,当Batch Size为1时,CPU性能最佳,MYRIAD次之,GPU最慢。随着Batch Size增大,虽然计算效率提高,但Latency也会增加。结论强调选择合适的Batch Size应考虑处理数据大小、算法结构和处理引擎的平衡。
摘要由CSDN通过智能技术生成

最近参加“英特尔®OpenVINO™领航者联盟 DFRobot行业AI开发者大赛”活动,采用benchmark_app.py做模型的benchmark时,发现采用不同的Batch Size,结果在CPU、GPU和MYRIAD上有很大的差距,特此整理如下,以供参考。

硬件平台:

主办方提供了拿铁熊猫LattePanda Delta和Intel神经计算棒NCS2,板上带有4GB内存,本文所列数据都是在该平台上运行得到的。

CPU是Intel 全新 N 系列赛扬 4 核4线程处理器N4100,最高可达 2.40 GHz,4MB缓存。

GPU是集成显卡UHD600,显卡基本频率是200MHz,最大动态频率是700MHz。

MYRIAD是Intel神经计算棒NCS2,Intel® Movidius™ Myriad™ X VPU核心,通过USB 3.1 Type-A接口插在LattePanda Delta上。

软件:

Windows 10, OpenVINO 2020.4,Python 3.6.5。

采用模型:

所采用模型:Xubett964.fp16.xml,输入为28x28的图像,网络结构图如下:

Xubett964.png

Batch Size:1

benchmark_app.py  -m Xubett964.fp16.xml -i testImg2.png -d CPU

[ INFO ] Read network took 174.37 ms
[ INFO ] Network batch size: 1
[ INFO ] Load network took 234.38 ms
[ INFO ] Network input 'imageinput' precision FP32, dimensions (NCHW): 1 1 28 28

[Step 10/11] Measuring performance (Start inference asy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值