最近参加“英特尔®OpenVINO™领航者联盟 DFRobot行业AI开发者大赛”活动,采用benchmark_app.py做模型的benchmark时,发现采用不同的Batch Size,结果在CPU、GPU和MYRIAD上有很大的差距,特此整理如下,以供参考。
硬件平台:
主办方提供了拿铁熊猫LattePanda Delta和Intel神经计算棒NCS2,板上带有4GB内存,本文所列数据都是在该平台上运行得到的。
CPU是Intel 全新 N 系列赛扬 4 核4线程处理器N4100,最高可达 2.40 GHz,4MB缓存。
GPU是集成显卡UHD600,显卡基本频率是200MHz,最大动态频率是700MHz。
MYRIAD是Intel神经计算棒NCS2,Intel® Movidius™ Myriad™ X VPU核心,通过USB 3.1 Type-A接口插在LattePanda Delta上。
软件:
Windows 10, OpenVINO 2020.4,Python 3.6.5。
采用模型:
所采用模型:Xubett964.fp16.xml,输入为28x28的图像,网络结构图如下:
Batch Size:1
benchmark_app.py -m Xubett964.fp16.xml -i testImg2.png -d CPU
[ INFO ] Read network took 174.37 ms
[ INFO ] Network batch size: 1
[ INFO ] Load network took 234.38 ms
[ INFO ] Network input 'imageinput' precision FP32, dimensions (NCHW): 1 1 28 28
[Step 10/11] Measuring performance (Start inference asy