双系统 Ubuntu18.04安装过程一、准备工作1.下载Ubuntu镜像Ubuntu18.04的下载地址: https://ubuntu.com/download/desktop2.制作U盘启动盘安装制作工具:rufus清空U盘,用来做启动盘点开rufus-3.1p文件,将rufus-3.1p.exe以管理员的身份运行,打开后如图所示:勾选显示USB外置硬盘,点选择,将下载好的Linux镜像选择进去,点OK就行,等全部写入进去后,安全移除U盘。至此,启动盘制作完成!二、安装Ubuntu18
libcublas.so.9.2: cannot open shared object file: No such file...问题原因及解决方法 sudo ldconfig /usr/local/cuda-9.0/lib64
pytorch 中的DataLoader DataLoader的作用:通常在训练时我们会将数据集分成若干小的、随机的batch,这个操作当然可以手动操作,但是PyTorch里面为我们提供了API让我们方便地从dataset中获得batch,DataLoader就是干这事儿的。它的本质是一个可迭代对象,一般的操作是:创建一个dataset对象创建一个DataLoader对象遍历这个DataLoader对象,将data, label加载到模型中进行训练#一个粗略的示意dataset = torchvision.datasets.MNIST
torch.norm torch.norm(input, p=‘fro’, dim=None, keepdim=False, out=None, dtype=None)返回所给tensor的矩阵范数或向量范数参数:input:输入tensorp (int, float, inf, -inf, ‘fro’, ‘nuc’, optional):范数计算中的幂指数值。默认为’fro’《pytorch求范数函数——torch.norm》dim (int,2-tuple,2-list, optional): 指定计算的维度。如
反转一个单链表;用栈模拟队列;Python实现数据流中的第K大----------小顶堆;数组中重复的数字;二维数组中的查找 1.leetcode 206 反转一个单链表# Definition for singly-linked list.# class ListNode:# def __init__(self, x):# self.val = x# self.next = Noneclass Solution: def reverseList(self, head: ListNode) -> ListNode: pre = None
堆、栈 有效的括号 leetcode 20class Solution: def isValid(self, s: str) -> bool: stack = [] paren_map = {')':'(',']':'[','}':'{'} for c in s: if c not in paren_map: stack.append(c) elif not stack
ibcublas.so.9.2: cannot open shared object file: No such file 检查 /usr/local/cuda-9.2/lib64 下是否有 libcublas.so.9.0如果有,终端输入:sudo ldconfig /usr/local/cuda-9.0/lib64
tensorflow2.2.0 CPU/GPU的安装 tensorflow2.2.0 CPU/GPU的安装打开anaconda promptCPU版本:pip install tensorflow==2.2.0 -i https://pypi.doubanio.com/simpleGPU版本:pip install tensorflow-gpu==2.2.0 -i https://pypi.doubanio.com/simple二选一即可,安装完成后,在anaconda prompt中以此输入python、import tensorflo
Anaconda创建多个虚拟环境 一、在开始之前,确保已经将pip、conda、ubuntu源更换为清华源说明:在终端中执行相应的命令即可。1 更换pip源pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pip -U\pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple2 更换conda源conda config --add channels https://mirrors
挑出离某个数最近的数 from decimal import *li = [1.23, 1.25, 1.3, 1.59, 1.52, 1.50, 1.7, 1.33, 1.22, 1.22, 1.9, 1.2]defaultnumber = 1.51select = Decimal(str(defaultnumber)) - Decimal(str(li[0]))index = 0for i in range(1, len(li) - 1): select2 = Decimal(str(defaultnumb
python基础 import osfor filename_ in os.listdir(r"./test_data/data/tmp8_process_few"): # listdir的参数是文件夹的路径 for filename in os.listdir(r"./test_data/data/tmp7_process_few"): print(filename) print(filename_)
144个数,挑出最接近1的数以及索引 144个数,挑出最接近1的数以及索引import numpy as npfrom decimal import *li = np.loadtxt('./out5.txt', usecols=1)defaultnumber = 1select = Decimal(str(defaultnumber)) - Decimal(str(li[0]))index = 0for i in range(1, len(i)-1): select2 = Decimal(str(defaultnumb
pycharm上传代码到github 一、配置pycharm点击create API,添加自己的github账号,切记将clone git 那个对勾去掉,不然会报: Successfully created project ‘…’ on GitHub, but initial push failed: Could not read from remotePath填写本地git可执行程序路径,也就是得先安装git bash,然后点击Test测试二、建立远程仓库并提交代码连接成功会有下面的提示,点击Continue即可在这里填写
Windows git安装以及使用 一、Windows git安装1.Git下载地址 :https://git-scm.com/downloads 进入后点击Download下载,如下图所示2.下载好了后,打开下载好的文件进行安装3.然后到如下图界面(默认即可)4.点击Next下一步,到如下图界面,配置git环境,选择第一项5.下面都是选择默认即可6.安装完成后,在桌面会有Git Bash快捷方式,以及桌面空白处右击出现Git命令,如下图二、git使用a>配置用户名:git config --gl
杂谈 12306:获取数据,爬虫。神经网络合成新数据GAN(音乐,图片)、K近邻(上采样)合成图片重复图片:去重,算法去重(MD5、SHA1等去重)分析数据,切割数据,分类(人工、慢),聚类算法,分层算法,PCA降维抽特征,根据这个特征进行聚类,卷积抽取特征(自编码),64*64(4096)------>128。特征提取,不仅仅是自编码。模型训练,深度神经网络:DNN,CNN,RNN,混合模型,集成模型使用深度学习算法特征提取-------》SVM进行类别分类/Xgboost分类...