讲解转自:https://blog.csdn.net/Mylily_123/article/details/77414030
1.初始化2个栈s1和s2,s1存放运算数,s2存放运算符;
2.从表达式左边开始,遍历表达式;
3.遇到运算数放入s1中,遇到运算符放入s2中,具体规则如下:
3-1 如果s2是空或者“()”,直接放进去;
3-2 如果s2不是空或者不是“)”,当前运算符和栈顶运算符进行比较:
如果当前运算符优先级 大于 栈顶运算符,直接放进去;
如果当前运算符优先级小于等于栈顶运算符,将栈顶运算符取出来放入s1中;
3-3 遇到“)”运算符出s2,入s1,直到遇到“(”,丢弃掉“()”,重复3-2、3-3;
4.s1依次出栈,放入s2栈;
5.s2出栈重新组成表达式,即后缀表达式。
模板转自:https://blog.csdn.net/xiaosshhaa/article/details/52705053
///中缀表达式转后缀表达式
#include<bits/stdc++.h>
const int MAX=100;
using namespace std;
char pp[MAX];//存储转换后的后缀表达式
void trans(char *str)//将中缀表达式转换后缀表达式
{
stack<char>ss;
int i,j;
i=0;
j=0;
while(str[i]!='#')
{
if(str[i]=='(')
{
ss.push(str[i]);
}
else if(str[i]==')')
{
while(ss.top()!='(')
{
pp[j++]=ss.top();
ss.pop();
}
ss.pop();
}
else if(str[i]=='+'||str[i]=='-')
{
while(!ss.empty()&&ss.top()!='(')
{
pp[j++]=ss.top();
ss.pop();
}
ss.push(str[i]);
}
else if(str[i]=='*'||str[i]=='/')
{
while((!ss.empty()&&ss.top()=='*')||(!ss.empty()&&ss.top()=='/'))
{
pp[j++]=ss.top();
ss.pop();
}
ss.push(str[i]);
}
else if(str[i]==' ')
{
i++;
continue;
}
else
{
while(str[i]>='0'&&str[i]<='9')
{
pp[j++]=str[i];
i++;
}
i--;
pp[j++]='#';
}
i++;
}
while(!ss.empty())
{
pp[j++]=ss.top();
ss.pop();
}
pp[j]='#';
for(int k=0; k<=j; k++)//输出转化后的后缀表达式
{
printf("%c",pp[k]);
}
printf("\n");
}
void compvalue()//计算后缀表达式的值
{
double d;
stack<double>mm;
int i;
i=0;
while(pp[i]!='#')
{
if(pp[i]=='+')
{
double r=mm.top();
mm.pop();
double l=mm.top();
mm.pop();
double result=l+r;
mm.push(result);
}
else if(pp[i]=='-')
{
double r=mm.top();
mm.pop();
double l=mm.top();
mm.pop();
double result=l-r;
mm.push(result);
}
else if(pp[i]=='*')
{
double r=mm.top();
mm.pop();
double l=mm.top();
mm.pop();
double result=l*r;
mm.push(result);
}
else if(pp[i]=='/')
{
double r=mm.top();
mm.pop();
double l=mm.top();
mm.pop();
double result=l/r;
mm.push(result);
}
else
{
d=0;
while(pp[i]>='0'&&pp[i]<='9')
{
d=10*d+pp[i]-'0';
i++;
}
mm.push(d);
}
i++;
}
printf("%lf\n",mm.top());
}
int main()
{
char str[MAX];
while(gets(str))
{int l=strlen(str);
str[l]='#';
str[l+1]='\0';
trans(str);
compvalue();
}
return 0;
}
中缀表达式转后缀表达式算法
本文介绍了一种使用两个栈s1和s2实现中缀表达式到后缀表达式的转换算法,详细解释了算法步骤,并提供了C++代码实现。包括运算数和运算符的处理规则,以及如何通过比较运算符优先级来完成转换。
934

被折叠的 条评论
为什么被折叠?



