poj 1742 多重背包 一维优化防止mle

题目链接:https://vjudge.net/problem/POJ-1742
转自:https://www.cnblogs.com/sevenun/p/5442279.html
题意:有n种硬币及其数量,求凑出的价值不超过m的方案数。
思路:设d[i][j]——前i种硬币,凑成总值j时,第i种硬币所剩余的个数。
   默认d[i][j] = -1,代表无法凑成总值j
   转移方程为,若d[i-1][j]≥0,代表前i-1种已能够凑成j,那么就不必花费第i种硬币,所以d[i][j] = c[i]
   否则就看d[i][j-a[i]]的值,显然如果j < a[i],那么d[i][j] = -1,否则d[i][j-a[i]] ≤ 0,代表此刻第i种硬币已使用完了,所以自然d[i][j] = -1;
   否则,d[i][j] = d[i][j-a[i]]-1;
   可以看到d[i][]的值只与d[i-1][]和d[i][]有关,所以我们可以采用一维数组的形式,从而能够节省内存空间。
   当然也可以用异或进行空间优化不用滚动数组,便于理解。

#include <iostream>
#include <cstring>
using namespace std;
int v[106],w[105],dp[100005];
int main()
{//设d[i][j]——前i种硬币,凑成总值j时,第i种硬币所剩余的个数.
    ios::sync_with_stdio(false);
    int n,m;
    while( cin>>n>>m)
    {
        if(n==m&&n==0)
            break;
        for(int i=0; i<n; i++)
        {
            cin>>v[i];
        }
        for(int i=0; i<n; i++)
        {
            cin>>w[i];
        }
        memset(dp,-1,sizeof(dp));
        dp[0]=0;
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<=m; j++)
            {
                if(dp[j]>=0)
                {
                    dp[j]=w[i];
                }
                else if(j<v[i]||dp[j-v[i]]<=0)
                {
                    dp[j]=-1;
                }
                else
                {
                    dp[j]=dp[j-v[i]]-1;
                }
            }
        }
        int ans=0;
        for(int i=1; i<=m; i++)
        {
            if(dp[i]>=0)
                ans++;
        }
        cout<<ans<<endl;

    }

    return 0;
}

异或优化

#include <iostream>
#include <cstring>
using namespace std;
int v[106],w[105],dp[2][100005];
int main()
{//设d[i][j]——前i种硬币,凑成总值j时,第i种硬币所剩余的个数.
    ios::sync_with_stdio(false);
    int n,m;
    while( cin>>n>>m)
    {
        if(n==m&&n==0)
            break;
        for(int i=0; i<n; i++)
        {
            cin>>v[i];
        }
        for(int i=0; i<n; i++)
        {
            cin>>w[i];
        }
        memset(dp,-1,sizeof(dp));
        dp[0][0]=0;
        dp[1][0]=0;
        int id=1;
        for(int i=0; i<n; i++)
        {
            for(int j=0; j<=m; j++)
            {
                if(dp[id^1][j]>=0)
                {
                    dp[id][j]=w[i];
                }
                else if(j<v[i]||dp[id][j-v[i]]<=0)
                {
                    dp[id][j]=-1;
                }
                else
                {
                    dp[id][j]=dp[id][j-v[i]]-1;
                }
            }
            id^=1;
        }
        int ans=0;
        for(int i=1; i<=m; i++)
        {
            if(dp[id^1][i]>=0)
                ans++;
        }
        cout<<ans<<endl;

    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值