
smolagents/open_deep_research:面向开放式研究的智能体开发框架深度解析
一、项目架构与设计哲学
1.1 核心架构设计
该项目基于分层的强化学习架构,实现开放式环境下的研究探索,其核心数学表达为:
max θ E τ ∼ p θ ( τ ) [ ∑ t = 0 T γ t r ( s t , a t ) ] + λ H ( π θ ) \max_\theta \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[ \sum_{t=0}^T \gamma^t r(s_t,a_t) \right] + \lambda H(\pi_\theta) θmaxEτ∼pθ(τ)[t=0∑Tγtr(st,at)]+λH(πθ)
其中关键组件实现如下:
class ResearchAgent(nn.Module):
def __init__(self, obs_dim, act_dim, hidden_size=512):
super().__init__()
# 观察编码器
self.encoder = TransformerEncoder(
dim=obs_dim,
depth=6,
heads=8,
mlp_dim=hidden_size
)
# 策略网络
self.policy = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.GELU(),
nn.Linear(hidden_size, act_dim)
)
# 价值网络
self.value = nn.Sequential(
nn.Linear(hidden_size, hidden_size),
nn.GELU(),
nn.Linear(hidden_size, 1)
)
def forward(self, obs):
h = self.encoder(obs)
return self.policy(h), self.value(h)
1.2 技术创新点
1.2.1 课程学习调度器
class CurriculumScheduler:
def __init__(self, init_difficulty=0.1, growth_rate=1.05):
self.current_level = init_difficulty
self.growth = growth_rate
def update(self, success_rate):
if success_rate > 0.8:
self.current_level *= self.growth
elif success_rate < 0.3:
self.current_level *= 0.9
def get_task(self):
return generate_task(self.current_level)
1.2.2 多模态观察处理
class MultiModalEncoder(nn.Module)

最低0.47元/天 解锁文章
359

被折叠的 条评论
为什么被折叠?



