【通用智能体】smolagents/open_deep_research:面向开放式研究的智能体开发框架深度解析

在这里插入图片描述

一、项目架构与设计哲学

1.1 核心架构设计

该项目基于分层的强化学习架构,实现开放式环境下的研究探索,其核心数学表达为:

max ⁡ θ E τ ∼ p θ ( τ ) [ ∑ t = 0 T γ t r ( s t , a t ) ] + λ H ( π θ ) \max_\theta \mathbb{E}_{\tau \sim p_\theta(\tau)} \left[ \sum_{t=0}^T \gamma^t r(s_t,a_t) \right] + \lambda H(\pi_\theta) θmaxEτpθ(τ)[t=0Tγtr(st,at)]+λH(πθ)

其中关键组件实现如下:

class ResearchAgent(nn.Module):
    def __init__(self, obs_dim, act_dim, hidden_size=512):
        super().__init__()
        # 观察编码器
        self.encoder = TransformerEncoder(
            dim=obs_dim,
            depth=6,
            heads=8,
            mlp_dim=hidden_size
        )
        # 策略网络
        self.policy = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.GELU(),
            nn.Linear(hidden_size, act_dim)
        )
        # 价值网络
        self.value = nn.Sequential(
            nn.Linear(hidden_size, hidden_size),
            nn.GELU(),
            nn.Linear(hidden_size, 1)
        )
        
    def forward(self, obs):
        h = self.encoder(obs)
        return self.policy(h), self.value(h)

1.2 技术创新点

1.2.1 课程学习调度器
class CurriculumScheduler:
    def __init__(self, init_difficulty=0.1, growth_rate=1.05):
        self.current_level = init_difficulty
        self.growth = growth_rate
        
    def update(self, success_rate):
        if success_rate > 0.8:
            self.current_level *= self.growth
        elif success_rate < 0.3:
            self.current_level *= 0.9
            
    def get_task(self):
        return generate_task(self.current_level)
1.2.2 多模态观察处理
class MultiModalEncoder(nn.Module)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值