F. Equalize the Array

这篇文章讲解了解决Codeforces#702(div3)问题F的方法,通过统计数组中每个数的出现次数,确定删除数量以达到新数组中各数出现次数相等。关键步骤包括计数、排序并计算保留元素数量。

来源:Codeforces #702(div 3)
https://codeforces.com/contest/1490/problem/F

题意:
给定一个长度为n的数组,问最少删除多少个数,使得新数组中每个数出现的次数相同。

题解:
记录每个数出现的次数,然后存入 n u m num num中,按从大到小排序,那么每个次数需要保留的元素个数就是 n u m [ i ] ∗ ( i + 1 ) num[i]*(i+1) num[i](i+1),也就是,所有出现次数大于等于当前次数的元素个数 × 当前出现次数。将num里的每个元素枚举一遍,找出最大值ans,那么最终最少需要删除的元素个数就是总个数n - ans。

具体细节见代码:

#include <bits/stdc++.h>
using namespace std;

map<int, int> num;
std::vector<int> all;
int main() 
{
    ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
    int t;
    cin >> t;
    while (t--) {
        int n;
        num.clear();
        all.clear();
        cin >> n;
        for (int i = 0; i < n; i++) {
            int x;
            cin >> x;
            num[x]++;
        }
        for (auto k : num) {
            all.emplace_back(k.second);
        }
        sort(all.begin(), all.end(), greater<int>());
        int ans = 0;
        int len = all.size();
        for (int i = 0; i < len; i++) {
            ans = max(ans, all[i] * (i + 1));
        }
        cout << n - ans << endl;
    }
    return 0;
}
import os import numpy as np; import matplotlib.pyplot as plt;这是我的代码,出现了上面的问题,请具体分析 import SimpleITK as sitk; from skimage import segmentation, morphology, measure, filters, exposure; def load_mhd_file(file_path):     image = sitk.ReadImage(file_path);     array = sitk.GetArrayFromImage(image);     return array; def preprocess_ct(ct_slice):     ct_slice = np.clip(ct_slice, -1000, 400)     ct_normalized = ((ct_slice - (-1000)) / (400 - (-1000)) * 255).astype(np.uint8)     return exposure.equalize_hist(ct_normalized) def lung_segmentation(ct_slice):     thresh = filters.threshold_otsu(ct_slice)     binary = ct_slice > thresh     cleaned = morphology.opening(binary, morphology.disk(2))     filled = morphology.remove_small_holes(cleaned, area_threshold=300)     label_image = measure.label(filled)     regions = measure.regionprops(label_image)     areas = [r.area for r in regions]         if len(areas) > 0:         areas_sorted = sorted(areas, reverse=True)         mask = np.zeros_like(binary)         for region in regions:             if region.area in areas_sorted[:2]:                 mask |= label_image == region.label         return mask     return filled def main():     ct_dir = "F:\\1\\VESSEL12"     mask_dir = "F::\\1\\VESSEL12_Lungmasks"     ct_files = [f for f in os.listdir(ct_dir) if f.endswith('.mhd')]     for sample_file in ct_files:      ct_array = load_mhd_file(os.path.join(ct_dir, sample_file))     mask_array = load_mhd_file(os.path.join(mask_dir, sample_file))     slice_idx = ct_array.shape[0] // 2     ct_slice = ct_array[slice_idx]     true_mask = mask_array[slice_idx]     processed_ct = preprocess_ct(ct_slice)     pred_mask = lung_segmentation(processed_ct)     plt.figure(figsize=(15, 10))     plt.subplot(1, 3, 1)     plt.imshow(processed_ct, cmap='gray')     plt.title('Original CT Slice')     plt.axis('off')     plt.subplot(1, 3, 2)     plt.imshow(true_mask, cmap='gray')     plt.title('Ground Truth Mask')     plt.axis('off')     plt.subplot(1, 3, 3)     plt.imshow(pred_mask, cmap='gray')     plt.title('Segmentatio
07-04
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值