1. 文章背景
昨天一个做视觉的同事说他每次处理现场收集的excel文件数据都要花很多时间,我就说帮他写个小程序,用于一键完成他所要的一堆数据,之前很早就用过pandas这个模块,不过最近都在写c++,好久没用python了,所以再写的时候发现很多函数都忘了怎么用了,这次记录下来,免得下次用的时候又忘了。
2. 主要模块
2.1 获得excel文件
把选中的文件路径存在列表里
curList = filedialog.askopenfilenames(filetypes=[('excel files', '*.xlsx *.csv')])
2.2 用到的函数
主要用到的就是:
1. 读取文件:pd.read_excel,可根据名称/索引的不同读到对应的sheet
sheets = pd.read_excel(excel文件路径, sheet_name=名称/索引, engine='openpyxl')
2. 拿到想要的行列部分:.iloc[row, col],行/列索引,:代表全选
sheetsData = pd.DataFrame(data = 读取的sheet).iloc[行索引, 列索引]
3. 保存成文件:to_csv/to_excel,index/header分别表示行头和列头
empty = pd.DataFrame()
empty.to_csv(保存路径, index = False, header=

本文介绍了如何使用Python的pandas模块高效处理Excel文件,包括读取、选择特定行列及保存为CSV文件,旨在帮助处理大量数据时节省时间。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



