python-pandas处理excel文件数据

本文介绍了如何使用Python的pandas模块高效处理Excel文件,包括读取、选择特定行列及保存为CSV文件,旨在帮助处理大量数据时节省时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 文章背景

        昨天一个做视觉的同事说他每次处理现场收集的excel文件数据都要花很多时间,我就说帮他写个小程序,用于一键完成他所要的一堆数据,之前很早就用过pandas这个模块,不过最近都在写c++,好久没用python了,所以再写的时候发现很多函数都忘了怎么用了,这次记录下来,免得下次用的时候又忘了。

2. 主要模块

2.1 获得excel文件

        把选中的文件路径存在列表里

curList = filedialog.askopenfilenames(filetypes=[('excel files', '*.xlsx *.csv')]) 

2.2 用到的函数

  主要用到的就是:

1. 读取文件:pd.read_excel,可根据名称/索引的不同读到对应的sheet

sheets = pd.read_excel(excel文件路径, sheet_name=名称/索引, engine='openpyxl')

2. 拿到想要的行列部分:.iloc[row, col],行/列索引,:代表全选

sheetsData = pd.DataFrame(data = 读取的sheet).iloc[行索引, 列索引]

3. 保存成文件:to_csv/to_excel,index/header分别表示行头和列头

empty = pd.DataFrame()
empty.to_csv(保存路径, index = False, header=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

那个谁_Viktor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值