- 博客(77)
- 资源 (1)
- 收藏
- 关注
原创 DETR模型转RKNN
RKNN出最新版本了,测试了一下,rk在transformer方面做了很多的工作,至少之前不能转的模型,现在可以在fp16上面运行了,在测试int8的时候还是有误差,以往后面优化吧,这一篇是DETR模型转rknn的fp16模型的过程。
2023-06-07 10:26:39
2453
1
原创 ONNX模型推理使用多核CPU加速推理
对于嵌入式设备,将模型转成onnx后,可以方便的将pytorch或者tensorflow的模型在嵌入式设备上运行,但是onnx模型默认只调用一个CPU核心去做推理,所以有些嵌入式设备有多核的CPU,推理推理可以适当的加速。
2023-05-17 10:56:47
9235
原创 Open-pose转RKNN
之前看到openpose的时候,想pt转onnx再转rknn,但是精度总是有问题,看到原来的openpose是caffe训练的,找了找caffe的模型,尝试转了rknn,没想到成功了,现在记录一下转化时候的坑!!!有坑的!!!
2023-03-29 12:08:27
1645
4
原创 ONNX模型结构的查看(Pytorch模型转onnx以及转torchscript模型)
1. 关于ONNX:不废话了,不了解的onnx的去知乎或者百度去查询(不要杠,杠就是你赢了)。2. 是不是还在烦恼模型的结构没有直观的感受,为什么别人对模型的理解这么深刻,讲道理,视觉上的感受一般比文字的感受更加深刻,所以神器在哪里?查看模型结构的神器在这里:Netronhttps://netron.app/ 主界面如下,比较简单的界面,但是功能很强大 如果担心模型被拷贝或者泄露,可以下载离线的版本(速度不行的话,请使用科学上网)GitHub - lutzroeder/...
2022-03-15 21:49:08
11457
1
原创 经典CNN网络:MobileNet V1
前言 关于深度学习中的CNN网络结构,前期能够解决问题是第一步,随着计算机技术的发展,移动设备和嵌入式设备随处可见,让移动设备也使用深度学习中的CNN网络结构自然成为一个关注点,由于CNN网络结构的参数多,模型比较大,训练的模型几乎都是几百M的,很难在移动设备运行,所以为了使CNN的网络结构在cpu也能达到理想的速度,轻量化的CNN模型应运而生。 关于轻量化的CNN模型的设计思路有两种:对训练好的浮点模型积进行模型的压缩得到小的模型(通常说的模型量化) 直接设计小...
2021-07-01 12:53:08
415
原创 目标检测:R-CNN系列
前言之前已经介绍过分类算法了,输入一张图片,通过卷积-池化-全连接基本模块,可以对图片进行区分。但实际的生活中,并不是对一张图片进行分类就够了,或者说分类已经无法满洲
2021-06-21 10:38:17
293
原创 3.2分类训练之AlexNet网络构建(Pytorch)
前言 之前的文章介绍过AlexNet的网络结构,今天通过pytorch框架实现一下跳连结构的Resnet18网络结构。具体的代码是下面这个链接博主写的,我是进行注释一下,代码不是原创。
2021-06-17 10:05:20
252
原创 经典CNN网络:DenseNet
前言 DenseNet和ResNet的思路类似,目的都是减轻梯度消失等深度学习中常见的一些问题。论文中写出DenseNet采用的是密集连接的方式,初次看还不太能理解,但是又感觉有点熟悉(突然想到了RNN中的LSTM结构),我认为密集连接通俗一点讲,就是联系上下文(英语考试中遇到不认识的单词,可以联系上下文进行猜测,应该是类似的)。...
2021-06-16 15:40:30
2547
1
原创 经典CNN网络:GoogleNet
GoogleNet的基本Inception单元结构主要思想是利用不同大小的卷积核实现不同尺度的感知,网络结构如下图所示
2021-06-16 12:15:07
403
原创 经典CNN网络:LeNet和AlexNet网络
前言经典的cnn模型,用于手写数字识别的lenet5,现在看起来,结构是比较简单的,但是奠定了之后,在卷积神经网络中相当长时间的(卷积+池化+全连接)的思路。Lenet5网络结构现在看一下网络架构吧。输入是32*32*1,包括了3层卷积,2层池化,2层全连接层...
2021-06-16 11:11:14
383
原创 3.1分类训练之Resnet网络构建(Pytorch)
前言 之前的文章介绍过VGG16的网络结构,今天通过pytorch框架实现一下串联的VGGNET网络结构。
2021-06-15 17:57:36
912
4
原创 经典CNN网络:Resnet18网络结构输入和输出
前言 每当看到一个新的网络,总会思考,这个网络提出来有什么意义,解决了什么问题?Resnet18的提出,解决
2021-06-15 17:37:00
90642
6
原创 4.分类训练之训练脚本(Pytorch)
import torchimport torch.nn as nnimport torchvisionfrom vggnet import VGGNetfrom load_cifar10 import train_loader, test_loaderimport os# 是否使用GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 遍历样本200次epoch_num =...
2021-06-10 17:48:06
1351
2
原创 3.分类训练之VGGNET网络构建(Pytorch)
import torch# 进行卷积import torch.nn as nn# 进行softmaximport torch.nn.functional as Ffrom torchsummary import summaryclass VGGbase(nn.Module): # 初始化函数 def __init__(self): # 初始化类 super(VGGbase, self).__init__() # 定义算子 .
2021-06-10 14:59:52
581
1
原创 2.分类训练之数据准备-自定义数据集(CIFAR10数据加载)
前言 pytorch中有许多公开的数据集可以加载,但是换成自己数据集,想训练自己定义的类别怎样做?这里以CIFAR10解析出来的图片数据为例。
2021-06-10 13:50:41
1848
原创 1.分类训练之数据准备-CIFAR10数据解析
CIFAR10数据介绍 该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。...
2021-06-10 11:30:57
683
3
原创 基于VGG网络的SSD算法
前言关于目标检测算法,可以分成两类,目标检测目前有 one-stage 和 two-stage 两种,two-stage 指的是检测算法需要分两步完成,首先需要获取候选区域,然后进行分类,比如R-CNN系列;与之相对的是 one-stage 检测,可以理解为一步到位,不需要单独寻找候选区域,典型的有SSD/YOLO。作者:HRain链接:https://www.jianshu.com/p/468e08f739bd来源:简书著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处
2021-06-09 12:18:46
2437
原创 经典CNN网络:VGG16-输入和输出
VGG16什么是VGG16?为什么是16?VGG16网络结构看不懂啊!!!(1)VGG是Oxford的Visual Geometry Group的组提出的(大家应该能看出VGG名字的由来了)。该网络是在ILSVRC 2014上的相关工作,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。VGG有两种结构,分别是VGG16和VGG19,两者并没有本质上的区别,只是网络深度不一样。...
2021-06-07 14:04:03
9447
2
原创 ubuntu-Pytorch环境配置
前言https://blog.csdn.net/weixin_43999691/article/details/117650421
2021-06-07 10:55:29
1024
原创 ubuntu-tensorflow环境配置
前沿刚接触ubuntu和深度学习框架的时候,都可能不清楚,为什么要用ubuntu系统,windows不是很号用吗?其实很多的开发是基于linux系统的,不一定是ubuntu,的
2021-06-07 10:29:21
1586
1
原创 数据处理之数据增强
对于深度学习拿到数据时,有时候样本数据太少,这时候就需要增加数据,可以利用数据增强来做,数据增强可以有效减少过拟合,更好地使模型适用于新的样本,目的是增强模型的泛化能力。如何进行数据增强?比如拿到一张图片,可以通过随机裁剪,旋转、缩放和水平翻转等操作来生成多张相似的图像,这样样本就增加了。具体操作代码...
2021-06-04 20:27:16
2781
9
原创 基础概念:图片的卷积和池化操作
基础一:图片的卷积和池化操作计算机视觉(分类/检测/分割)的基本操作图片的格式卷积和池化计算机视觉(分类/检测/分割)的基本操作在计算机视觉的深度学习中,我们最常用的就是CNN网络,翻译过来就是卷积神经网络,所以卷积操作就是最基本的操作。那我们就开始看看这个神奇的卷积操作是怎样的(我开始学习的时候根本就不清楚为什么要卷积,没有一个直观的概念)。图片的格式(1)在构建好深度学习网络后,我们要将数据读取进去进行训练(本人认为数据预处理阶段相较于网络的构建更加花费时间,后续有时间再说),(2)平时的图
2021-06-04 17:22:37
6514
2
原创 python 自动划分训练集和测试集
自动划分训练集和测试集前言代码总结前言在进行深度学习的模型训练时,我们通常需要将数据进行划分,划分成训练集和测试集,若数据集太大,数据划分花费的时间太多!!!不多说,上代码(python代码)代码# *_*coding: utf-8 *_*# Author --LiMing--import osimport randomimport shutilimport timedef copyFile(fileDir,origion_path1,class_name): name =
2021-02-25 10:49:42
9827
13
原创 检测:根据xml文件在图片上绘制框图
目标检测:根据xml文件在图片上绘制框图编译环境文件结构代码解析结果展示代码是参考的多方资源,并非所有都是原创,如有侵权行为,请及时告知。编译环境python 3.6opencv-pythonxml我使用的是anaconda 在安装相应的程序时会自动配置相应的库。文件结构1.origin_img:放置图片和xml文件2.test:用于保存处理后的图片3.show_img:主程序代码解析import cv2import osfrom xml.etree import Ele
2021-02-25 10:29:48
1378
7
yolov5-rk的c++程序
2025-01-23
yolov4-车道线检测代码
2024-03-19
深度学习推理框架tvm-RK3588-gpu使用完整代码
2023-12-22
YOLOV8模型转换-ONNX-RKNN
2023-10-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅