Zoran_卓
码龄3年
  • 45,481
    被访问
  • 100
    原创
  • 1,132,375
    排名
  • 16
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2018-12-07
博客简介:

Zoran的博客

查看详细资料
  • 3
    领奖
    总分 194 当月 26
个人成就
  • 获得50次点赞
  • 内容获得30次评论
  • 获得200次收藏
创作历程
  • 18篇
    2021年
  • 24篇
    2020年
  • 44篇
    2019年
  • 20篇
    2018年
成就勋章
TA的专栏
  • python
    8篇
  • 论文笔记
    8篇
  • 操作系统实验
    4篇
  • 数据结构
    1篇
  • pytorch
    3篇
  • leetcode
    9篇
  • 算法设计与分析
    1篇
  • 目标检测
    4篇
  • ACM
    14篇
兴趣领域 设置
  • 人工智能
    机器学习tensorflow
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

python多线程爬取单词百度翻译

from urllib import request,parseimport jsonimport threadingimport timeimport randomfrom queue import Queueimport csvheaders = ["Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.
原创
发布博客 2021.06.27 ·
63 阅读 ·
0 点赞 ·
0 评论

Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation 论文笔记

  本文提出使用使用联邦蒸馏 (federated distillation FD)和联邦增强(federated augmentation FAug)来解决联邦学习中客户端数据非独立同分布和客户端之间通讯开销大的问题。Communication-Efficient On-Device Machine Learning: Federated Distillation and Augmentation under Non-IID Private Data NIPS 20181.联邦蒸馏在传统的联邦学
原创
发布博客 2021.05.20 ·
647 阅读 ·
0 点赞 ·
0 评论

Word文档添加伪代码(Aurora)或公式(AxMath)

这里写目录标题Word文档添加伪代码(Aurora插件)Word文档添加伪代码(Aurora插件)1.先下载MiKTex官网地址 https://miktex.org/download安装步骤可以看官网的指导 https://miktex.org/howto/install-miktex2.下载Aurora插件这个...
原创
发布博客 2021.05.10 ·
2209 阅读 ·
5 点赞 ·
3 评论

后序表达式的转换与计算的原理及实现

本篇博客部分内容出自《2022数据结构考研复习指导》,仅作个人学习记录。这里写目录标题一、中序表达式转后序表达式的目的二、转换步骤三、isp和icp的含义四、具体例子五、实现代码一、中序表达式转后序表达式的目的  表达式求值是程序设计设计语言编译中一个最基本的问题。中序表达式不仅要依赖运算符的优先级,还要处理括号。如果计算机直接计算中序表达式,会用到大量if-else语句判断数字,运算符以及括号的关系,非常复杂。  后序表达式的运算符在操作数后面,在后序表达式中已经考虑了运算符的优先级,没有括号,只
原创
发布博客 2021.05.04 ·
338 阅读 ·
0 点赞 ·
0 评论

一次成功安装pytorchGPU版本

昨天重装系统了,很多东西都重新安装过。下面介绍我安装pytorhGBP版本的过程,希望能帮到大家。1.安装cuda这个步骤可以参考我之前写的文章在windows10下安装tensorflow的GPU版本。安装cuda的内容是一致的。2.选择torch和torchvision的版本首先要清楚pytorch和cuda版本的对应关系再理清pytorch和torch版本对应关系例如我的python版本是3.7,cuda版本是10.0,那么我torch和torchvision的版本可以选择为1.2.0
原创
发布博客 2021.03.08 ·
218 阅读 ·
0 点赞 ·
1 评论

leetcode之回溯算法

22.括号的生成2021.2.22class Solution: def generateParenthesis(self, n: int) -> List[str]: res = [] def DFS(L, R, cur_str): if L==n and R==n: res.append(cur_str) return if L<R:
原创
发布博客 2021.03.02 ·
31 阅读 ·
0 点赞 ·
0 评论

leetcode之832翻转图象

知识点:1.数组整行翻转:list[::-1]2.要求让 0 变成 1,1 变成 0有两种方法:1-x,异或运算x^1方法一先整行翻转,再逐项替换class Solution: def flipAndInvertImage(self, A: List[List[int]]) -> List[List[int]]: n = len(A) for i in range(n): A[i] = A[i][::-1]
原创
发布博客 2021.02.24 ·
19 阅读 ·
0 点赞 ·
0 评论

leetcode之滑动窗口

这道题的思路是滑动窗口,何为滑动窗口:1.使用两个指针表示字符串的某个字串。其中左指针在下面的代码中为i,右指针为tail。2.在每一步的操作中,将左指针向右移动一格,表示开始枚举下一个字符作为起始位置,然后不断的向右移动右指针,直到遇到重复的字符,记录下字串长度。...
原创
发布博客 2021.01.28 ·
36 阅读 ·
0 点赞 ·
0 评论

leetcode之两数相加

这题每用到什么特殊的算法,直接上代码# Definition for singly-linked list.# class ListNode:# def __init__(self, val=0, next=None):# self.val = val# self.next = nextclass Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode
原创
发布博客 2021.01.26 ·
18 阅读 ·
0 点赞 ·
0 评论

leetcode之罗马数字转整数

我的答案思路:完全按着题目的意思即可class Solution: def romanToInt(self, s: str) -> int: DICT = {"I":1, "V":5, "X":10, "L":50, "C":100, "D":500, "M":1000} sum = 0 mark=0 i=0 while(i<len(s)): if i!=len(s)-1:
原创
发布博客 2021.01.26 ·
21 阅读 ·
0 点赞 ·
0 评论

leetcode之最长连续递增序列

思路:使用动态规划,创建一个数组f,f[i]表示以nums[i]结束的的连续序列长度。ps:刚好期末考试考了最大递增子序列,手动狗头。时间复杂度:O(n)O(n)O(n)空间复杂度:O(m)O(m)O(m)class Solution: def findLengthOfLCIS(self, nums: List[int]) -> int: if nums==[]: return 0 f = [1 for _ in range(len
原创
发布博客 2021.01.25 ·
41 阅读 ·
0 点赞 ·
0 评论

leetcode之有效的括号

这道题很简单,就是用栈的可以解决了。由于发现leetcode给出的运行时间和内存消耗并不准确(同一个答案三次提交运行时间和内存消耗都不同),所以便不在给出具体的数值了。自己写的答案在这里插入代码片...
原创
发布博客 2021.01.23 ·
33 阅读 ·
0 点赞 ·
0 评论

leetcode之回文数

自己写的解:思路:将数字变成字符串,再逐个字符进行对比执行用时: 92 ms,超过23%内存消耗: 14.8 MB,超过20%class Solution: def isPalindrome(self, x: int) -> bool: if x<0: return False a = str(x) length = len(a)-1 if length
原创
发布博客 2021.01.21 ·
38 阅读 ·
0 点赞 ·
1 评论

leetcode之两数之和

思路:先排序,在遍历。排序用快速排序,时间复杂度为O(nlogn)O(nlogn)O(nlogn),遍历的时间复杂度为O(n)O(n)O(n),总的时间复杂度为O(nlogn)O(nlogn)O(nlogn)。空间复杂度O(n)O(n)O(n).class Solution(object): def quick_sort(self, nums, l, r): if l<r: i = l j = r k
原创
发布博客 2021.01.20 ·
23 阅读 ·
0 点赞 ·
0 评论

算法设计与分析之基础知识

本篇文章大部分内容出自《算法设计与分析(第二版)》,仅作个人学习记录。一.函数的渐近的界(1)若存在正数ccc和n0n_{0}n0​使得对一切n≥n0有0≤f(n)≤cg(n)n \ge n_{0}有0 \le f(n) \le cg(n)n≥n0​有0≤f(n)≤cg(n)成立,则称f(n)f(n)f(n)的渐近的上界是g(n)g(n)g(n),记作f(n)=O(g(n)).f(n)=O(g(n)).f(n)=O(g(n)).(2)若存在正数ccc和n0n_{0}n0​使得对一切n≥n0有0≤cg(
原创
发布博客 2021.01.20 ·
128 阅读 ·
0 点赞 ·
0 评论

python的生成器

在我前面写的python的for循环用法这篇文章中提到可以用列表生成生成一个列表。但在一些情况下列表生成式并不适用,例如生成几十万个元素的列表,海量的数据会消耗大量的内存空间。如果列表元素可以按照某种方法推断出来,在我们需要的时候用采用for循环不断的推出后面的元素,这样就不必创建完整的列表,从而可以减少所占的内存空间了。生成器(generator)就是这样一种机制。如何创建生成器?1.将列表生成式最外层的的[]改为()即可。...
原创
发布博客 2021.01.20 ·
42 阅读 ·
0 点赞 ·
0 评论

Dataset Distillation论文笔记

  本文提出了一种称为数据集蒸馏的方法:保持模型不变,尝试从一个大型训练数据集提取知识到一个小的数据集。其思想是合成少量的数据(每个类别一个数据),这些数据不需要来自正确的数据分布,但是当作为模型的训练数据时,训练得到的模型将近似于在原始数据上训练的模型。论文地址:https://arxiv.org/pdf/1811.10959.pdf代码地址:https://github.com/SsnL/dataset-distillation算法细节  标准的训练通常是在小批量上做随机梯度下降,每一步t从
原创
发布博客 2021.01.04 ·
512 阅读 ·
0 点赞 ·
0 评论

pytorch笔记(二)——模型的保存与加载

1.保存和加载模型# 模型保存model = ModelClass(*args, **kwargs)torch.save(model, 'model.ckpt')# 模型加载model = torch.load(PATH)  保存整个神经网络的的结构信息和模型参数信息,save的对象是网络net。加载时则无需再定义网络。2.保存和加载模型参数# 模型参数保存model = ModelClass(*args, **kwargs)torch.save(model.state_dict(),
原创
发布博客 2021.01.04 ·
218 阅读 ·
0 点赞 ·
2 评论

pytorch笔记(一)——tensor的storage()、stride()、storage_offset()

目录1 storage()2 stride()3 storage_offset()1 storage()  pytorch中的一个tensor分为头信息区(Tensor)和存储区(Storage)  信息区主要保存着tensor的形状(size)、步长(stride)、数据类型(type)等信息。  而真正的数据则保存成连续数组,存储在存储区。  一般一个tensor都会有相对应的Storage,但也有另一种情况时多个tensor都对应着相同的一个Storage,这几个tensor只是头信息区不同
原创
发布博客 2020.12.06 ·
2562 阅读 ·
14 点赞 ·
0 评论

python的浅拷贝与深拷贝

在学习浅拷贝和深拷贝之前,应该先了解可变对象和不可变对象这两个概念,否则会对浅拷贝的使用感到迷惑。那什么是可变对象和不可变对象呢?可变对象是指,一个对象的值被修改后,指向该对象的地址是不会发生变化的。在python中,可变对象有:List(列表)、Dictionary(字典)、Set(集合)。# 以list为例子a = [1, 2, 3]b = aprint("a的地址:", id(a))print("b的地址:", id(b))print("a[0]的地址:", id(a))print(
原创
发布博客 2020.12.04 ·
43 阅读 ·
0 点赞 ·
0 评论
加载更多