TP,TN,FP和FN是混淆矩阵(Confusion Matrix)中的四个量,用来评价分类模型的性能。这四个量的含义如下:
TP(True Positive):表示实际为正例且被模型预测为正例的样本数量。
TN(True Negative):表示实际为负例且被模型预测为负例的样本数量。
FP(False Positive):表示实际为负例但被模型预测为正例的样本数量。
FN(False Negative):表示实际为正例但被模型预测为负例的样本数量。
其中,"Positive"表示模型预测的类别是正例,"Negative"表示模型预测的类别是负例。在二分类问题中,正例和负例分别对应着模型需要区分的两个类别。
实际是什么例 现在分到哪一类 分没分对
TP 正 正 对 (实际为正例的样本,被预测到正例了)
TN 负 负 对
FP 负 正 错
FN 正 负 错(实际为正例的样本,被预测为负例了)
总结:
实际上属于什么例:同正异负
分到哪一类了:第二位(P or N)
分没分对:第一位 (T or F)