正例负例 TP TN FP FN

混淆矩阵用于评估分类模型的性能,主要包含四个指标:TP(真阳性)表示实际正例被正确预测,TN(真阴性)表示实际负例被正确预测,FP(假阳性)表示实际负例被错误预测为正例,FN(假阴性)表示实际正例被错误预测为负例。这些指标在二分类问题中至关重要,帮助分析模型的准确性和误判情况。
摘要由CSDN通过智能技术生成

TP,TN,FP和FN是混淆矩阵(Confusion Matrix)中的四个量,用来评价分类模型的性能。这四个量的含义如下:

  • TP(True Positive):表示实际为正例且被模型预测为正例的样本数量。

  • TN(True Negative):表示实际为负例且被模型预测为负例的样本数量。

  • FP(False Positive):表示实际为负例但被模型预测为正例的样本数量。

  • FN(False Negative):表示实际为正例但被模型预测为负例的样本数量。

其中,"Positive"表示模型预测的类别是正例,"Negative"表示模型预测的类别是负例。在二分类问题中,正例和负例分别对应着模型需要区分的两个类别。

实际是什么例 现在分到哪一类 分没分对

TP 正 正 对 (实际为正例的样本,被预测到正例了)

TN 负 负 对

FP 负 正 错

FN 正 负 错(实际为正例的样本,被预测为负例了)

总结:

实际上属于什么例:同正异负

分到哪一类了:第二位(P or N)

分没分对:第一位 (T or F)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值