Python小白学数据分析(2):Pandas概述(中)

本文详细介绍了Pandas中的Series数据结构,包括如何通过模块导入、字典实例化、标量值实例化等方式创建Series。文章还讨论了Series的索引操作、算术运算、name属性及其修改方法,帮助Python新手理解并掌握Series的使用。
摘要由CSDN通过智能技术生成

引言

先介绍下 Pandas 的数据结构,毕竟数据结构是万物的基础。
Pandas 有两种主要的数据结构: Series 和 DataFrame ,本文就先介绍第一种 Series 。

模块导入

首先我们在代码中引入 Pandas 和 Numpy ,如下:

import numpy as np
import pandas as pd

Series

Series 可以简单的理解为一维数组,可以存储整数、浮点数、字符串、Python 对象等类型的数据。
这个概念有点像 Java 中的集合。
如果无法理解的话,那么可以看下面这个图(Excel 简单画画,灵魂画手登场):

这里的 data 可以是上面提到的那些数据类型,并不仅限于图中的整数。
如果 index 的值未指定,那么将会自动的创建数值类型的索引,从 0 开始,例如:0 , 1 , 2, 3 … len(data) - 1 。
创建一个 Series ,这里我们可以使用 pd.Series 函数来创建,如下:

s = pd.Series(np.random.rand(5), index=['a', 'b', 'c', 'd', 'e'])
print(s)
print(s.index)

s1 = pd.Series(np.random.randn(5))
print(s1)

结果如下:

a    0.218164
b    0.153201
c    0.572437
d    0.142784
e    0.710664
dtype: float64
Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
0    0.255452
1    1.354357
2    2.092490
3    0.353899
4    1.692989
dtype: float64

从上面我们可以看到,如果我们手动指定了索引,那么将会按照我们指定的索引进行创建,如果没有指定会直接使用数值索引。
注意: 如果我们手动指定索引,索引的长度必须与数据的长度一致。如果不一致,将会抛出 ValueError 的异常,如下:

s = pd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值