引言
前文我们介绍了数据分组,今天我们接着介绍一个和数据分组很相似的内容,是数据透视表,从名字上来看是不是感觉没半毛钱关系,实际不然,数据分组是从一维(行)的角度上对数据进行了拆分,如果我们想从二维的角度上(行和列)同时对数据进行拆分呢?
这就需要用到我们今天的主角,数据透视表了。
数据透视表
什么是数据透视表?小编的灵魂画手上线:

图画的不好,各位同学凑合理解。
在 Excel 中,其实也有数据透视表这个东西,在插入中全选数据后点击数据透视表,就会出来这么个东西:

点击确定后会有这么个画面:

具体在 Excel 中如何使用各位同学可以百度查一下,毕竟这里是讲 Python 的地方,关于 Excel 的操作就不多说了,Pandas 的操作和 Excel 的使用还是比较相似的。
在 Pandas 中,实现

本文介绍Pandas中的数据透视表功能,通过pivot_table()方法实现二维数据拆分。结合Excel中的数据透视表概念,展示了如何使用Pandas进行数据汇总,包括values、index、columns和aggfunc等参数的用法,并通过疫情数据集实例说明数据透视表的使用技巧。
最低0.47元/天 解锁文章
542

被折叠的 条评论
为什么被折叠?



