所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。
给定 a 所在的区间 [m,n],是否存在缘分数?
输入格式:
输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。
输出格式:
按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution。
输入样例 1:
8 200
输出样例 1:
8 3
105 10
输入样例 2:
9 100
输出样例 2:
No Solution
题解
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace st

本文介绍了PAT乙级考试中的一道题目,涉及缘分数的概念,即一对正整数a和b,满足a的立方差等于c的平方,且c为b的平方和。给定区间[m,n],需要找出是否存在这样的缘分数。题目提供了输入输出格式和样例,但未给出具体解题过程。"
49556409,5413663,构建顺序串算法库及测试,"['数据结构', '算法实现', 'C++编程', '项目实践']
最低0.47元/天 解锁文章


被折叠的 条评论
为什么被折叠?



