【Week 14 作业】必做题

必做题A

Q老师与剪刀石头布

题意描述

每一个大人曾经都是一个小孩,Q老师 也一样。
为了回忆童年,Q老师 和 Monika 玩起了石头剪刀布的游戏,游戏一共 n 轮。无所不知的 Q老师 知道每一轮 Monika 的出招,然而作为限制, Q老师 在这 n 轮游戏中必须恰好出 a 次石头,b 次布和 c 次剪刀。
如果 Q老师 赢了 Monika n/2(上取整) 次,那么 Q老师就赢得了这场游戏,否则 Q老师 就输啦!
Q老师非常想赢,他想知道能否可以赢得这场游戏,如果可以的话,Q老师希望你能告诉他一种可以赢的出招顺序,任意一种都可以。

输入格式

第一行一个整数 t(1 ≤ t ≤ 100)表示测试数据组数。然后接下来的 t 组数据,每一组都有三个整数:

第一行一个整数 n(1 ≤ n ≤ 100)
第二行包含三个整数 a, b, c(0 ≤ a, b, c ≤ n)。保证 a+b+c=n
第三行包含一个长度为 n 的字符串 s,字符串 s 由且仅由 ‘R’, ‘P’, ‘S’ 这三个字母组成。第 i 个字母 s[i] 表示 Monika 在第 i 轮的出招。字母 ‘R’ 表示石头,字母 ‘P’ 表示布,字母 ‘S’ 表示剪刀

输出格式

对于每组数据:

如果 Q老师 不能赢,则在第一行输出 “NO”(不含引号)
否则在第一行输出 “YES”(不含引号),在第二行输出 Q老师 的出招序列 t。要求 t 的长度为 n 且仅由 ‘R’, ‘P’, ‘S’ 这三个字母构成。t 中需要正好包含 a 个 ‘R’,b 个 ‘P’ 和 c 个 ‘S’

“YES”/"NO"是大小写不敏感的,但是 ‘R’, ‘P’, ‘S’ 是大小写敏感的。

样例输入

2
3
1 1 1
RPS
3
3 0 0
RPS

样例输出

YES
PSR
NO

思路

遍历输入的字符串,根据a,b,c的值尽可能的多赢,并对赢的位置进行标记,记录赢的总次数。
若总次数大于n/2(上取整) 次,则根据标记判断每一局的结果,若有标记,输出赢的情况,否则,根据abc判断剩余的出招情况,任选未使用的一种出拳即可。
若小于n/2(上取整)次,则直接输出NO。

代码

#include <iostream>
#include <string.h>
using namespace std;
const int size=100+10;
int n;
int a,b,c;
char str[size];
bool res[size];
int ans;
void solve()
{
	ans=0;
	for(int i=0;i<n;i++)
	{
		if(str[i]=='R')
		{
			if(b>0)
			{
				b--;res[i]=true;ans++;
			}
			else
				res[i]=false;
		}
		else if(str[i]=='P')
		{
			if(c>0)
			{
				c--;res[i]=true;ans++;
			}
			else
				res[i]=false;
		}
		else
		{
			if(a>0)
			{
				a--;res[i]=true;ans++;
			}
			else
				res[i]=false;
		}
	}
	if(ans>=n/2.0)
	{
		printf("YES\n");
		for(int i=0;i<n;i++)
		{
			if(res[i])
			{
				if(str[i]=='R')printf("P");
				else if(str[i]=='P')printf("S");
				else printf("R"); 
			}
			else
			{
				if(a>0)
				{
					printf("R");a--;
				}
				else if(b>0)
				{
					printf("P");b--;
				}
				else 
				{
					printf("S");c--;
				}
			}
		}
		printf("\n");
	}
	else
		printf("NO\n"); 
}
int main() {
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d",&n);
		scanf("%d%d%d",&a,&b,&c);
		scanf("%s",str);
		solve();
	}
	return 0;
}

必做题B

Q老师与十字叉

题意描述

在这里插入图片描述

输入格式

第一行包含一个整数 q (1 ≤ q ≤ 5 * 10^4) — 表示测试组数
对于每组数据:
第一行有两个整数 n 和 m (1 ≤ n, m ≤ 5 * 10^4, n * m ≤ 4 * 10^5) — 表示网格图的行数和列数
接下来的 n 行中每一行包含 m 个字符 — ‘.’ 表示这个格子是白色的, ‘*’ 表示这个格子是黑色的
保证 q 组数据中 n 的总和不超过 5 * 104, n*m 的总和不超过 4 * 10^5

输出格式

答案输出 q 行, 第 i 行包含一个整数 — 表示第 i 组数据的答案

输入样例

9
5 5
..*..
..*..
*****
..*..
..*..
3 4
****
.*..
.*..
4 3
***
*..
*..
*..
5 5
*****
*.*.*
*****
..*.*
..***
1 4
****
5 5
.....
..*..
.***.
..*..
.....
5 3
...
.*.
.*.
***
.*.
3 3
.*.
*.*
.*.
4 4
*.**
....
*.**
*.**

输出样例

0
0
0
0
0
4
1
1
2

思路

遍历网格图,记录每一行与每一列的空白格数,然后再遍历每一个位置,对于该位置若为黑格,则以该位置为十字叉所需分钟数为该位置所在行列的空白格数相加,若该位置为空白格则还需减一,求所有位置所需最小分钟数即可。

代码

#include <iostream>
#include <string.h>
using namespace std;
const int size=4e5+10;
const int inf=1e9;
char map[size];
int col[size];
int row[size];
int ans;
int n,m;
void solve()
{
	for(int i=0;i<n;i++)
	{
		row[i]=0;
		for(int j=i*m;j<(i+1)*m;j++)
		{
			if(map[j]=='.')row[i]++;
		}
	}
	for(int i=0;i<m;i++)
	{
		col[i]=0;
		for(int j=i;j<n*m;j+=m)
		{
			if(map[j]=='.')col[i]++;
		}
	}
	ans=inf;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<m;j++)
		{
			int temp=row[i]+col[j];
			if(map[i*m+j]=='.')temp--;
			ans=min(ans,temp);
		}
	}
	printf("%d\n",ans);
}
int main() {
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		for(int i=0;i<n;i++)
		{
			scanf("%s",map+i*m);
		}
		solve();
	}
	return 0;
}

必做题C

Q老师的考验

题意描述

Q老师 对数列有一种非同一般的热爱,尤其是优美的斐波那契数列。
这一天,Q老师 为了增强大家对于斐波那契数列的理解,决定在斐波那契的基础上创建一个新的数列 f(x) 来考一考大家。数列 f(x) 定义如下:
当 x < 10 时,f(x) = x;

当 x ≥ 10 时,f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10),ai 只能为 0 或 1。
Q老师 将给定 a0~a9,以及两个正整数 k m,询问 f(k) % m 的数值大小。
聪明的你能通过 Q老师 的考验吗?

输入格式

输出文件包含多组测试用例,每组测试用例格式如下:
第一行给定两个正整数 k m。(k < 2e9, m < 1e5)
第二行给定十个整数,分别表示 a0~a9。

输出格式

对于每一组测试用例输出一行,表示 f(k) % m 的数值大小。

输入样例

10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0

输出格式

45
104

思路

构造矩阵乘法的递推公式,使用矩阵快速幂来优化矩阵幂运算,需要注意的是首项的选择,是从第9项开始计算的。

代码

#include <iostream>
#include <string.h>
using namespace std;
int k,m;
const int N=10;
struct Matrix{
	int x[N][N];
	Matrix operator*(const Matrix&b)
	{
		Matrix ret;
		for(int i=0;i<N;i++)
		{
			for(int j=0;j<N;j++)
			{
				for(int k=0;k<N;k++)
				{
					ret.x[i][j]+=(x[i][k]*b.x[k][j])%m;
					ret.x[i][j]%=m;
				}
			}
		}
		return ret;
	}
	Matrix()
	{
		memset(x,0,sizeof(x));
	}
	Matrix(Matrix&b)
	{
		memcpy(x,b.x,sizeof(x));
	}
};
Matrix quick_pow(Matrix a,int x)
{
	Matrix ret;
	for(int i=0;i<N;i++)
		ret.x[i][i]=1;
	while(x)
	{
		if(x&1)ret=ret*a;
		a=a*a;
		x>>=1;
	}
	return ret;
}
int main(int argc, char** argv) {
	while(scanf("%d%d",&k,&m)!=EOF)
	{
		if(k<=9)
		{
			printf("%d\n",k%m);
			continue;
		}
		Matrix temp;
		for(int i=0;i<N;i++)
			scanf("%d",&temp.x[0][i]);
		for(int i=1;i<N;i++)
			temp.x[i][i-1]=1;
		temp=quick_pow(temp,k-9);
		
		int ans=0;
		for(int i=0;i<10;i++)
		{
			ans+=(temp.x[0][i]*(9-i))%m;
			ans%=m;
		}
		printf("%d\n",ans);
	}
	return 0;
}
展开阅读全文
©️2019 CSDN 皮肤主题: 黑客帝国 设计师: 上身试试
应支付0元
点击重新获取
扫码支付

支付成功即可阅读