【可持久化线段树】洛谷 P3919

 洛谷 P3919 【模板】可持久化数组(可持久化线段树/平衡树)

题意:

维护一个长度为 N 的数组,支持如下几种操作

  1. 在某个历史版本上修改某一个位置上的值

  2. 访问某个历史版本上的某一位置的值

此外,每进行一次操作(对于操作2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本。版本编号即为当前操作的编号(从1开始编号,版本0表示初始状态数组)

思路:

  • 对数组建了一颗线段树。
  • 查询操作和线段树操作一样。
  • 建树和更新的时候就是要注意“可持久化”的永久标记。每次更新只需要更新叶子节点所在的那一条链,其余的都继承上一棵树的信息。

感悟:

  • 这个真真切切是在敲了三个主席树的模板之后自己敲出来的可持久化线段树的模板。看了题之后,其实就清楚它和主席树唯一的区别是:主席树(可持久化权值线段树)是权值线段树,而可持久化线段树就是普通的线段树。但是就是没敢上手敲。总感觉哪里不对。又特别没出息的去网上看博客,调了一个网上的代码,那个代码写法和我的不一样。我是回溯更新父亲结点的信息。但他的是子函数返回更新。(不过我还是很喜欢那个小哥哥或小姐姐的码风,和我的有、像。哈哈)调了一会,发现其实没有什么不同,本质是一样的。就想,这不是跟主席树一样的嘛!!!!嗐,用了差不多得有两个小时在这个题上,结果就是一道和主席树变了一丢丢的板子题。我哭了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define INF 0x3f3f3f3f
#define lowbit(x) x & (-x)

#define MID (l + r ) >> 1
#define lsn rt << 1
#define rsn rt << 1 | 1
#define Lson lsn, l, mid
#define Rson rsn, mid + 1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define eps  1e-6

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxN = 1e6 + 5;
int n, m, UP;
struct node{
    int ls, rs, val;
    node(int a = 0, int b = 0, int c = 0) : ls(a), rs(b), val(c) {}
}tree[maxN * 20];
int root[maxN], tot;
int arr[maxN];
void build_tree(int &now, int l, int r)
{
    now = ++ tot;
    if(l == r) { tree[now].val = arr[l]; return ; }
    int mid = MID;
    build_tree(tree[now].ls, l, mid);
    build_tree(tree[now].rs, mid + 1, r);
}
void update(int &now, int pre, int l, int r, int pos, int val)
{
    now = ++ tot;
    tree[now] = tree[pre];
    if(l == r) { tree[now].val = val; return; }
    int mid = MID;
    if(mid >= pos) update(tree[now].ls, tree[pre].ls, l, mid, pos, val);
    else update(tree[now].rs, tree[pre].rs, mid + 1, r, pos, val);
}
int query(int vers, int l, int r, int pos)
{
    if(l == r) { return tree[vers].val; }
    int mid = MID;
    if(mid >= pos) return query(tree[vers].ls, l, mid, pos);
    else return query(tree[vers].rs, mid + 1, r, pos);
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++ )
        scanf("%d", &arr[i]);
    build_tree(root[0], 1, n);
    for(int i = 1; i <= m; i ++ )//每一次操作之后都是一个新的version
    {
        int version, op; scanf("%d%d", &version, &op);
        if(op == 1)//修改操作
        {
            int pos, val; scanf("%d%d", &pos, &val);
            update(root[i], root[version], 1, n, pos, val);
        }
        else if(op == 2)//查询操作
        {
            int pos; scanf("%d", &pos);
            root[i] = root[version];//当前为查询操作,“新树”完全继承第version棵树
            printf("%d\n", query(root[version], 1, n, pos));
        }
    }
   return 0;
}

二刷

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#define INF 0x3f3f3f3f
#define lowbit(x) x & (-x)

#define MID (l + r ) >> 1
#define lsn rt << 1
#define rsn rt << 1 | 1
#define Lson lsn, l, mid
#define Rson rsn, mid + 1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define eps  1e-6

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxN = 1e6 + 5;
int n, m, arr[maxN];
struct node{
    int ls, rs, val;
    node(int a = 0, int b = 0, int c = 0): ls(a), rs(b), val(c) {}
}tree[maxN * 20];
int root[maxN], tot;
void build_tree(int &rt, int l, int r)
{
    rt = tot ++;
    if(l == r) { tree[rt].val = arr[l]; return; }
    int mid = MID;
    build_tree(tree[rt].ls, l, mid);
    build_tree(tree[rt].rs, mid + 1, r);
}
void update(int &now, int pre, int l, int r, int pos, int val)
{
    now = ++ tot;
    tree[now] = tree[pre];
    if(l == r) { tree[now].val = val; return ; }
    int mid = MID;
    if(mid >= pos) update(tree[now].ls, tree[pre].ls, l, mid, pos, val);
    else update(tree[now].rs, tree[pre].rs, mid + 1, r, pos, val);
}
int query(int rt, int l, int r, int pos)
{
    if(l == r) return tree[rt].val;
    int mid = MID;
    if(mid >= pos) return query(tree[rt].ls, l, mid, pos);
    else return query(tree[rt].rs, mid + 1, r, pos);
}
int main()
{
    scanf("%d%d", &n, &m);
    for(int i = 1; i <= n; i ++ )
        scanf("%d", &arr[i]);
    build_tree(root[0], 1, n);
    for(int i = 1; i <= m; i ++ )
    {
        int version, op, pos;
        scanf("%d%d%d", &version, &op, &pos);
        if(op == 1) // 修改操作
        {
            int val; scanf("%d", &val);
            update(root[i], root[version], 1, n, pos, val);
        }
        else
        {
            root[i] = root[version];
            printf("%d\n", query(root[version], 1, n, pos));
        }

    }
   return 0;
}

 

 

发布了191 篇原创文章 · 获赞 57 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览