西木科技Westwood-Robotics人型机器人Bruce配置和真机配置 - 人形机器人Brcue相关介绍 - 在docker中安装Gazebo并安装机器人相关仿真 - Bruce机器人更换控制器后环境配置
IsaacGym四足机器人sim to real全过程详细解析(walk these ways方法) 本文使用强化学习的方法运行到Aliengo机器人上完成从训练到部署的全过程。该方法使用的是GO1机器人提供了完整的sim to real代码和遥控器控制代码,所以我们只需要重新训练和部署健康就可以使用在Aliengo上。该方法使用lcm进行通讯首先程序通过UDP和机器人控制板进行通讯获取机器人状态并下达指令。然后又通过lcm进行机器人状态信息的发布和模型命令的获取。
docker中安装ROS 在宇树四足机器人运行 强化学习GenLoco算法 本文使用Aliengo四足机器人,所有SDK和ros to real 都是官方适配Aliengo机器人。电脑使用是ubuntu20.04系统,所以使用Docker来安装ROS 的melodic版本。GenLoco问题1:catkin_make编译过程中出现找不到头文件问题解决方法是因为无法访问到环境变量,或环境变量写错在unitree_ros/unitree_legged_sdk/CMakeLists.txt文件中增加一行。
QT学习笔记 2、QString与string,即std::string。Linux下还需安装GCC等依赖参考。1、QString与int相互转换。在命令行中执行安装器,添加。从国内镜像下载在线安装器。在Linux下执行语句为。
在华为服务器上安装MindSpore Reinforcement 就可以使用了,注意此时您创建的环境可能不在原来安装的anaconda 下面,而是在用户文件夹下的某个位置。3 输入你要激活的虚拟环境指令 conda activate your_virtual_name。2 然后终端输入 source deactivate。1 首先终端输入 source activate。左边为文件管理界面右边为命令行和代码编写界面。MindStudio类似于pycharm。tensorflow 使用相关问题。使用pip命令安装GYM。CANN和CUDA类似。pip安装GYM报错。
一篇了解算力相关问题 一篇文章看懂算力相关算力介绍不同数据格式处理整数型数据的运算速度处理浮点型数据的运算速度格式换算常见处理器算力展示算力介绍算力即处理器每秒钟可进行的操作次数即OPS(Operations Per Second)其中对不同数据的操作又分为了不同的算力指标,如FLOPS,OPS等。不同数据格式计算机中使用的数据格式分为整数型(int)和浮点型(float)等。比特币和ETH都大量涉及Hash的计算,门罗有涉及AES的计算,这使得挖矿其实很大程度是加密解密性能的比拼,同时加密解密的计算也会受限于带宽和
TrueNAS scale的安装及docker中远程下载功能的实现 TrueNAS scale 的安装司波图的视频坑:我的U盘写入要用DD模式,不然无法启动。使用TrueNAS-SCALE-21.08-BETA.1.iso版本配置i7-6700 8gdocker中远程下载aria2的安装视频中是使用Portainer安装第三方docker容器,但是没有教如何安装远程下载工具Aria2。直接用命令行。但是TrueNAS中直接使用docker的命令。docker run -d \--name aria2-pro \--restart unless-stopp
私有数据集再训练YOLOv3 YOLOv3要求https://github.com/eriklindernoren/PyTorch-YOLOv3数据集格式:images是图片labels是TXT格式的标记# labels的文件格式0 0.515 0.5 0.21694873 0.18286777# 第一位0:代表class.names文件中类别列表中0位(第一行)的类# 后面四位为:x y w hclass.names是一共有哪些分类,一种分类是一行train.txt是训练集图片列表#train.txt的文件格
关于GMac和FLOPs讨论 FLOPs: s小写,指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。(模型) 在论文中常用GFLOPs(1 GFLOPs = 10^9 FLOPs)10亿次浮点运算数(1 MFLOPs = 10^6 FLOPs)1百万次浮点运算数is there a typo here? I did a little reading and it seems that @snownus has it right. In general a multiply-accumulate is one multi
docker 下配置Faster RCNN dockers安装和Nvidia-docker安装Ubuntu从头开始使用Docker运行OpenPose获取镜像找到一个合适的dockershttps://hub.docker.com/r/jimmyli/faster-rcnn-gpuDockerfile 修改sources.list源docker pull jimmyli/faster-rcnn-gpu镜像创建好了之后在用docker run命令建立容器创建容器这是docker hub上写的方法,是有问题的,因为英伟达docker改
配置训练HRNet的环境 配置训练HRNet的环境配置HRNet的环境网络介绍网络配置运行测试Class usage训练HRNet安装cocoapi安装nms数据集的放置训练配置HRNet的环境网络介绍simple-HRNet是一个简化版的HRNet没有官方那么复杂的,也更好配置。是基于官方代码,论文地址网络配置软硬件环境:电脑一:python 3.7.6Ubuntu 18.04 LTSCUDA:10.1Pytorch:1.4.0torchvision:0.5.0Driver Version: 440.10