笔记47:FCN网络的Pytorch实现

本地笔记地址:D:\work_file\DeepLearning_Learning\03_个人笔记\1.语义分割任务\Pytorch中FCN的实现

a

a

a

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
fcn语义分割是一种基于全卷积神经网络的图像分割方法,可以对图像中的每个像素进行分类,从而实现对整张图像的语义分割。以下是fcn语义分割的pytorch实现步骤: 1. 定义模型:使用pytorch定义全卷积神经网络模型,可以使用已经训练好的预训练模型,如VGG16等。 2. 加载数据集:加载训练集和测试集,并对数据进行预处理,如归一化、裁剪等。 3. 训练模型:使用训练集对模型进行训练,并在验证集上进行验证,可以使用交叉熵损失函数和随机梯度下降等优化算法。 4. 测试模型:使用测试集对训练好的模型进行测试,并计算模型的准确率、召回率、F1值等指标。 5. 可视化结果:将模型输出的分割结果可视化,可以使用matplotlib等库进行可视化。 以下是一个简单的fcn语义分割pytorch实现示例: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import models # 定义fcn模型 class FCN(nn.Module): def __init__(self, num_classes): super(FCN, self).__init__() self.features = models.vgg16(pretrained=True).features self.conv1 = nn.Conv2d(512, num_classes, kernel_size=1) self.conv2 = nn.Conv2d(256, num_classes, kernel_size=1) self.conv3 = nn.Conv2d(128, num_classes, kernel_size=1) def forward(self, x): x = self.features(x) x1 = self.conv1(x) x = nn.functional.upsample_bilinear(x1, scale_factor=32) x2 = self.conv2(x) x = nn.functional.upsample_bilinear(x2, scale_factor=16) x3 = self.conv3(x) x = nn.functional.upsample_bilinear(x3, scale_factor=8) return x # 加载数据集 train_dataset = ... test_dataset = ... # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(num_epochs): for i, (inputs, labels) in enumerate(train_dataset): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 测试模型 for i, (inputs, labels) in enumerate(test_dataset): outputs = model(inputs) # 计算指标 # 可视化结果 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值