【itransformer 多变量时间序列 】

本文探讨了在IT技术背景下,如何处理和分析多变量时间序列数据,以支持实时预测和决策,强调了这类数据在现代业务中的重要性。
摘要由CSDN通过智能技术生成

**输入数据:**多变量时间序列

在这里插入图片描述

### Transformer 模型用于时间序列预测的原理 #### 输入表示 时间序列可以被视作一个离散信号,其中每个时间步对应一个观测值。为了使这些数据适应于Transformer架构,在输入阶段通常会将原始的时间序列转换成适合处理的形式。这可能涉及到标准化、归一化以及添加位置编码来保留时间顺序的信息[^2]。 #### 编码器结构 在iTransformer等改进版本中,采用了倒置变换的思想优化了传统Transformer的设计。通过这种方式增强了对于长期依赖性的建模能力,使得网络能够更好地理解长时间跨度内的模式变化[^1]。编码器部分由多层自注意力机制构成,每一层都负责提取不同层次上的特征表达;随着层数加深,所获得的信息也更加抽象复杂。 #### 自注意力机制的作用 核心在于利用自注意力(Self-Attention)模块自动学习各个时刻之间的关联程度。具体来说就是计算当前节点与其他所有节点之间的重要性权重,并据此加权求和得到新的向量表示形式。这种方法允许模型聚焦于那些对预测最有帮助的部分,而不仅仅是局限于相邻的数据点上。 #### 解码与预测过程 经过编码后的隐状态会被传递给解码端完成最终的任务——即基于已有历史记录推测未来的发展趋势。在这个过程中可能会引入额外的上下文信息作为辅助指导,比如季节性因素或是外部事件的影响等等。最后输出的结果通常是下一个或几个连续时间段内目标变量的变化情况估计值。 ```python import torch.nn as nn class TimeSeriesPredictor(nn.Module): def __init__(self, input_dim, model_dim, num_heads, num_layers, output_dim): super(TimeSeriesPredictor, self).__init__() # Positional Encoding Layer self.positional_encoding = PositionalEncoding(model_dim) # Encoder Layers encoder_layer = nn.TransformerEncoderLayer(d_model=model_dim, nhead=num_heads) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) # Output Projection Layer self.output_proj = nn.Linear(model_dim, output_dim) def forward(self, src): src = self.positional_encoding(src) # Add positional encoding to the source sequence memory = self.transformer_encoder(src) # Pass through transformer encoder layers output = self.output_proj(memory[-1]) # Project last time step's hidden state return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值