自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(135)
  • 资源 (15)
  • 收藏
  • 关注

原创 transformer模型训练结构解析(加深理解)

模型的训练self,n_steps,n_layers,d_model,d_inner,n_head,d_k,d_v,dropout,):self.d_k,self.d_v,else:val_X, 0.2) #这行代码调用了一个名为_train_model的方法,并传入了training_loader作为参数#根据代码片段的上下文,可以推测_train_model方法是用来执行模型的训练操作的。

2023-10-28 19:56:40 307

原创 注意力屏蔽(Attention Masking)在Transformer中的作用 【gpt学习记录】

填充遮挡(Padding Masking):未来遮挡(Future Masking):

2023-10-13 16:09:33 716

原创 9.21广读最新arxiv论文 思路学习汇总

在本文中,我们研究了一个新的城市流动生成问题,为没有历史流动数据的地区生成动态城市流动。进一步的深入研究证明了生成城市流动数据的有效性,以及我们的模型在长期流动生成和城市流动预测方面的能力。一方面,现有方法无法全面探索多视角数据,因为它们通常学习视图之间的共同表示,而多视角数据既包含视图之间的共同信息,也包含每个视图内的特定信息。评价:感觉是个很有用的研究角度,衡量嵌入式方法在捕捉结构和上下文信息方面的有效性的方法,里面大概简单选了一些指标来评估吧,但理论性一般,没有太数学的支撑。

2023-09-25 15:57:00 145

原创 【手动实现nn.Linear 】

另外,最近的一些感想,觉得神经网络更多像是一种将数据抽象成某个维度,从而转换到另一个空间进行处理的过程,本质是对特征的处理,很多方法和模型结构也的设计也都是在更好地去映射和捕捉特征。

2023-09-25 08:59:26 496

原创 9.20广读论文 核心思路笔记

摘要:会话模型中,生成型和开放领域的模型尤其容易产生不安全内容,因为它们是在基于网络的社交数据上进行训练的。以前缓解这个问题的方法有缺点,比如打断对话的流畅性,对未见过的有毒输入上下文的泛化有限,以及为了安全而牺牲对话的质量。在本文中,我们提出了一个新颖的框架,名为 “LOT”(学习不要),该框架利用对比损失来通过学习正负训练信号来提高泛化能力。我们的方法不同于标准的对比学习框架,因为它能自动从之前学习过的安全和不安全语言分布中获取正负信号。联想和思考:概率分布的学习和神经网络之间的关系。

2023-09-21 15:34:49 143

原创 BERT 快速理解——思路简单描述

BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的语言模型,它基于Transformer架构,通过在大规模的未标记文本上进行训练来学习通用的语言表示。

2023-09-19 22:33:24 1680

原创 9.14-广读最新研究方向论文核心思路汇总

为了解决这个问题并提高数据效率,我们引入了一种新颖的对比性 affordance 学习框架,该框架能够在包含单个遮挡物的场景上进行训练,并推广到具有复杂遮挡组合的场景。摘要:在金融领域,为了实现对表格文本数据的智能理解,以前的研究通过问答任务探索了数值推理在表格文本内容上的应用。在本文中,我们提出了一种新颖的语义导向层次图(SoarGraph),它利用层次图来模拟不同元素(例如,问题、表格单元格、文本段落、数量和日期)之间的语义关系和依赖关系,以促进支持证据的提取并提高数值推理能力。关键词:先验知识约束。

2023-09-18 09:00:30 132

原创 9.13-广读最新研究方向论文核心思路汇总

*受到开发者调试代码时与代码互动的方式的启发,我们提出了自动科学调试(AutoSD)技术,该技术给定有错误的代码和一个揭示错误的测试用例,提示大型语言模型自动生成假设,使用调试器积极与错误代码交互,从而在补丁生成之前自动得出结论。能够访问解释的参与者判断补丁正确性的时间与那些不能访问的参与者大致相同,但他们在研究中的五个实际错误中的准确性有所提高:70% 的参与者回答在使用修复工具时希望得到解释,而 55% 的参与者回答他们对科学调试表示满意。此外,它还揭示了预训练菜谱的可能的泄漏,例如,

2023-09-13 16:17:54 407

原创 广读论文核心思路汇总笔记 (一些有意思的论文and论文在研究的一些有意思的问题or场景应用)

在这样分析的指导下,我们提出了一种名为 BeMap 的公平消息传递方法,它利用一种平衡感知的抽样策略来平衡不同人口群体中每个节点的 1-跳邻居数量。在本文中,我们提出了一种名为 BagFormer 的双编码器模型,它利用跨模态交互机制来提高召回率,同时不牺牲延迟和吞吐量。我们表明,FGNN 能够表示最大似然概率图模型的近似推理算法——最大积,因此,当最大积表现良好时,FGNN 也能表现良好。提出了 IPM,它利用预训练语言模型捕捉填充的语义,把文本插补建模为分类任务,充分利用预训练语言模型捕捉语义的能力。

2023-09-13 13:23:07 254

原创 CrossEntropyLoss() 和 nn.BCEWithLogitsLoss() 举例说明区别

然后,它计算模型输出与目标标签之间的二元交叉熵损失。在多分类任务中,模型的最后一层输出是一个概率分布,表示每个类别的概率。CrossEntropyLoss() 计算模型输出与目标标签之间的交叉熵损失,用于衡量模型的预测与真实标签之间的差异。需要注意的是,nn.BCEWithLogitsLoss() **可以用于多标签分类任务,**其中每个样本可以属于多个类别。总之,CrossEntropyLoss() 适用于多分类任务,而 nn.BCEWithLogitsLoss() 适用于二分类任务和多标签分类任务。

2023-09-09 17:28:29 1130

原创 内积与外积的含义与区别,余弦相似度

余弦相似度

2023-06-05 10:37:15 352

原创 softmax计算报错 float32改为float64

或者在计算时考虑到数值范围的限制,避免指数函数产生太大的数值。此外,也可以通过一些技巧,如在计算过程中减去最大值,和使用其他数值计算的方式规避数值上溢所带来的问题。逐步查看, 在计算指数函数之前,检查计算的值是否超出了浮点数的值域,这个警告通常是由于在某些计算过程中计算出的指数函数值超出了计算机的浮点数表示范围而触发的。在计算机运算中,数值计算的精度取决于计算机能够表示的数的范围和精度。函数中输入的值超出可用的数据类型的表示范围时,就会发生这种情况。解决方案:float32改为float64。

2023-04-07 16:46:58 613

转载 核函数 <-- 内积 <-- 余弦相似

2023-03-23 18:50:14 160

原创 conda环境打包迁移及部署

进入到要打包的虚拟环境中。

2023-03-14 20:20:06 1042

原创 pycharm代码与远程服务器映射

点击配置,先把Python编译器环境选择到远程服务器配置好的环境下的python,融合把当前项目的地址和远程服务器的代码进行映射,这样运行的其实是远程服务器的代码,这样远程服务器上的代码改动后,debug或运行时发现结果也会改变。这样的好处就是,可以在本地调试,目前就知道这么多,其他确实还也有些不太理解。

2023-03-09 19:45:58 815

转载 PyCharm:如何将一个项目用作另一个项目的依赖项?

我已将 xyz 的主目录路径添加到用于项目 abc 的解释器的 PYTHONPATH 中: Settings->Project->Project Interpreter->Show All->Interpreter Paths->Add Path。在项目 abc 中,我们有一个带有函数 f1() 的模块 abc.mod_a,在项目 xyz 中,我们有一个带有函数 f2() 的模块 xyz.mod_b。我已将 xyz 添加为项目 abc 的项目依赖项: 设置->项目->项目依赖。它将为您处理所有依赖项。

2023-02-28 21:27:36 1588

原创 查看虚拟环境下某个python包的函数用法

3.输入help(xxx.xxx)某个包的某个函数。2.进入该环境下的python环境。1.先进入到虚拟环境。

2023-02-09 11:10:44 323

原创 医疗NLP方向讲座报告学习整理记录

首先听了一个医学知识图谱构建的报告,感觉分享人逻辑非常清晰,并且能够一句话说出模型算法的核心原理及优缺点,也能很清楚地阐述论文研究在做怎么样一件事,优化的主要方向是哪些点,并且能感受到他对领域内其他相关算法也十分熟悉,收获很多。2.多听几场报告感觉就能够较整体地快速了解到一个领域里目前的相关基本情况,从而有宏观的一个印象,去看论文也更心里有数。1.听论文报告讲座真的学习体验感很好,对自己读论文写论文也有很大帮助。然后听了听多模态预训练相关的一个报告。

2023-01-23 21:37:13 204

原创 【Attention Decoder的三种方式】

2、general 方式:两个向量之间加入一个参数矩阵,可以训练得到。1、dot 方式: 直接做点积。

2023-01-19 11:08:34 236

原创 【医学数据融合文本方向 思路整理】

我们保留了一些基本的人口统计详细信息(即年龄,性别和种族),以及以结构化格式提供的常见临床描述符,例如诊断(ICD-9代码,药物,程序和实验室测试,以及在拆分点之前记录的自由文本临床注释)使用开放式生物医学注释器对所有临床记录进行预处理,以获取用于程序和实验室测试,基于品牌名称和剂量的标准化药物,以及从自由文本注释中提取临床概念。,从而最大程度地利用EHR信息,促进EHR研究。用病情描述加治疗方案,预测复诊率和住院天数等等。用病情描述,预测疾病诊断,预测死亡率。

2023-01-19 11:07:21 1602

原创 理解代码遇到的问题总结(一)

理解代码遇到的问题总结(一)

2023-01-18 10:11:34 682

原创 Mufasa: Multimodal Fusion Architecture Search For Electronic Health Records【多模态融合架构 论文笔记】

将深度学习应用于电子健康记录(EHR)的一个重要挑战是其多模态结构的复杂性。EHR通常包含具有稀疏和不规则纵向特征的结构化(代码)和非结构化(自由文本)数据,医生在做出决策时都会用到这些数据。在深度学习体系中,确定不同的情态表征应该如何融合在一起是一个困难的问题,通常通过手工建模和直觉来解决。在这项工作中,我们扩展了最先进的神经架构搜索(NAS)方法,并首次提出了多模态融合架构search(MUFASA),以同时搜索多模态融合策略和模态特定架构。我们从经验上证明,在公共EHR数据上,我们的MUFASA方法优

2022-10-19 10:07:54 609 1

原创 Integrating Static and Time-Series Data in Deep Recurrent Models for Oncology Early Warning Systems

最近的研究,如GRAM[10]、RETAIN[7]、Dipole[27]、MIME[11]、KAME[28]、DoctorAI[8]和HiTANet[24],提出了可以与RNN联合训练的注意机制,以根据医院就诊的连续医疗代码预测临床结果。肿瘤住院患者面临危及生命的临床恶化风险:根据最近的一项研究,6.4%的肿瘤住院患者至少有一个重症监护室(ICU)转移,其中2.7%死于医院病房异常的生命体征、实验室值或检测结果往往预示着临床恶化,这导致基于电子健康记录(EHR)的早期预警系统(EWS)的开发。

2022-10-08 10:47:40 351

原创 HGMF: Heterogeneous Graph-based Fusion for Multimodal Data with Incompleteness【多模态 异质图 不完整数据学习】

随着数据收集技术的进步,从多个来源收集的大量多模数据变得可用。这种多模态数据可以提供补充信息,从而揭示现实世界主体的基本特征。因此,多模态机器学习已成为一个活跃的研究领域。已经开展了大量工作,以利用多模交互和整合多源信息。然而,由于各种原因,例如传感器损坏、数据损坏和记录中的人为错误,现实世界中的多模式数据通常会缺少模式。有效地集成和分析不完整的多模态数据仍然是一个具有挑战性的问题。我们提出了一种基于异构图的多模式融合(HGMF)方法,以实现异构图结构中不完整数据的多模式合并。

2022-10-06 22:37:09 1019

原创 KDD2020 Identifying Sepsis Subphenotypes via Time-Aware Multi-Modal Auto-Encoder 时间感知多模式自动编码器——阅读笔记

脓毒症是一种异质性临床综合征,是医院重症监护病房(ICU)死亡的主要原因。确定脓毒症的亚表型可以进行更精确的治疗,并导致更有针对性的临床干预。最近,电子健康记录(EHR)上的败血症分型引起了医疗研究人员的兴趣。然而,大多数脓毒症亚型研究忽略了EHR数据的暂时性,并且缺少数值。在本文中,我们提出了一个新的败血症分型框架来解决这两个问题。

2022-10-05 23:11:08 210

原创 常用python包环境命令总结

查看当前环境下的python版本查看包详细信息查看已经安装的pytorch的版本适合当前python安装对应的pytorch版本

2022-07-04 15:59:33 647

原创 This Python interpreter is in a conda environment, but the environment has not been activated.

首先选择编译器环境为conda问题:在命令行输入python后,显示出:Warning:This Python interpreter is in a conda environment, but the environment hasnot been activated. Libraries may fail to load. To activate this environmentplease see https://conda.io/activation.在项目的terminal窗口查看

2022-06-19 20:51:16 624

原创 【论文笔记】动态图神经常微分方程 Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs

多元时间序列预测在能源消耗和交通预测等实际应用中一直受到了广泛的关注。虽然最近的方法显示出良好的预测能力,但它们有三个基本的限制。(i).离散的神经结构:交错使用单独参数化的空间和时间块来编码丰富的潜在模式,会导致不连续的潜在状态轨迹和更高的预测数值误差(ii).高复杂性:离散方法使具有专用设计和冗余参数的模型复杂化,导致了更高的计算开销和内存开销。(iii).依赖于图的先验:依赖于预定义的静态图结构限制了其在现实应用中的有效性和实用性。在本文中,我们通过提出一个用动态图神经常微分方程(MTGODE)预测多

2022-06-01 16:14:53 2820

原创 【论文笔记】多元时间序列预测 图结构推断 A Study of Joint Graph Inference and Forecasting

A Study of Joint Graph Inference and Forecasting1.摘要:我们研究了一类最近的模型,它使用 图神经网络(GNNs) 来改进对多元时间序列的预测。这些模型背后的核心假设是,在时间序列(节点)之间有一个潜在的图,它支配着多元时间序列的演化。模型通过以不同的方式参数化一个图,最终目的都在于提高预测质量。我们在预测任务上比较了这类参数化方法的四个最新模型。此外,我们执行消融实验来研究它们在不断变化条件下的行为。例如,不使用图结构学习模块而直接提供数据之间的关系。基

2022-05-31 20:49:18 458

原创 随机梯度下降,批梯度下降,小批量梯度下降,minibatch

区分几个概念epoch:把全部样本进行了一轮训练batchsize:每次训练时用的样本数量,每一个batch,loss和梯度都计算一次并将权重更新一次对比几种梯度下降随机梯度下降(stochastic gradient descent):就是每读取一个数据就计算损失函数更新梯度,缺点是由于单个数据差异大,导致训练波动大,收敛性不太好,且每次计算一个样本,并行性差,优化时时间过长,优点是由于具有一定的随机性,可以克服参数优化更新过程中遇到的 “鞍点”。批梯度下降(batch gradient d

2022-04-18 10:38:51 283

原创 Survey on Research of RNN-Based Spatio-Temporal Sequence Prediction Algorithms 时空序列数据预测综述笔记

当前时序模型存在问题基于RNN的时空序列预测方法虽然取得了很大的进展,但仍存在许多问题。在传统的时空序列预测方法中,对其进行了选择模型仍然依赖于特定的数据集和个人经验,没有指导思想,这些传统的方法很难捕获动态时空关系数据。在数据驱动的模型中,如时空支持向量回归和深度学习,模型的泛化能力是从历史样本中学习出来的,因此它在很大程度上依赖于历史的数据。时空序列数据往往是复杂的,并经常受到各种因素的影响。在原始数据中有许多缺失和错误,这也影响了原始数据的准确性时空序列预测。数据处理、模型设计和选择是提高时空序列预

2022-04-03 10:17:00 974

原创 使用Pytorch中的tensorboard可视化网络训练参数

环境配置pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorboard安装tensorboard,TensorBoard可视化的数据来自于本地l文件,在控制台开启TensorBoard服务时指定该文件夹为监控文件夹。默认开启6006端口提供服务,通过http://localhost:6006/可以访问可视化结果简单试验官方示例from torch.utils.tensorboard import SummaryWriter

2022-03-29 09:20:10 3209

原创 多通道卷积理解

多通道卷积应用例如:对于彩色图片有RGB三个通道,需要处理多输入通道的场景。输出特征图往往也会具有多个通道,而且在神经网络的计算中常常是把一个批次的样本放在一起计算,所以卷积算子需要具有批量处理多输入和多输出通道数据的功能。批量操作conv2d 常用的参数如下:in_channels(int) - 输入图像的通道数。out_channels(int) - 卷积核的个数,和输出特征图通道数相同,相当于上文中的C(out)。kernel_size(int|list|tuple) -

2022-03-21 21:59:53 10334 1

原创 【图神经网络的设计 文献理论创新总结】

1.图神经网络的设计角度AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models 【 ICLR 2021】创新点: 将传统机器学习方法(AdaBoost)与GNN结合,提出AdaGCN,AdaGCN在所有层之间共享相同的基本神经网络结构,能够在一定程度上解决过平滑问题。摘要: 深度图模型仍是一个有待研究的问题,关键之处在于如何有效地汇聚来自多跳邻居节点的特征信息。在本文中,通过将AdaBoost融入到图网络中提出了一个类似于

2022-03-21 11:06:17 2008

原创 读科研论文的论文十问小结

平时读论文有些随意,经常是看别人写的博客,然后又很少记录笔记,也没有仔细思考上面这些问题,有些一味地去看算法和公式什么意思,感觉还是需要多多思考上面这些问题,然后及时整理,用博客对比记录下来。另外看到论文的某些段落时,有哪些想法也可以记录在旁边,总之需要写一些思考笔记。还有就是不要追求数量,有些好论文应该精读,特别是引用较高的文章,思考人家的优点,如果连好文章好在哪都没有一个明显的感觉话,确实就失去了一个启发学习的机会。...

2022-03-15 16:31:44 303

原创 图神经网络基础——(一)图论基础

首先,先推荐一个非常好的公众号:深度学习与图网络,其中真的对图神经网络的介绍非常全面,而且易懂,连续刷里面的一些文章,对GNN的体系差不多就建立的差不多了~尤其是其中的这篇渐进式总结的入门干货分享!!干货分享|深度学习与图网络从入门到进阶【内容丰富】 ,我当时按照顺序看了一上午,真的觉得思路清奇地清晰,完全是下一篇文章的一个算法改进了上一篇更旧的模型的一些不足。 里面资料也很丰富,强烈推荐了~另外,对图卷积部分做个简单的小结。(参考了较多他人成果)从空域角度看GCN空域,谱域卷积,两者..

2022-03-15 11:21:35 2306

转载 TensorFlow找不到cudart64_110.dll not found

Could not load dynamic library ‘cudart64_110.dll’;dlerror: cudart64_110.dll not found可以直接在网上找cudart64_110.dll文件cudart64_110.dll的下载链接如下:https://www.dll-files.com/cudart64_110.dll.html下载完之后,需要把先文件解压,然后将cudart64_110.dll放在文件夹下C:\Windows\System32...

2022-03-11 11:42:11 2850 1

原创 pip 镜像源下载命令

收藏一些比较好用的镜像下载,可以大大加快包安装的速度 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.3.0 ##后面的包名可直接替换

2022-03-08 19:46:27 1557

原创 os.path.join() 路径拼接错误解决 “/“ 和 “\“

os.path.join() 路径拼接错误解决 斜杠/和反斜杠\

2022-03-08 19:37:41 4359

原创 【pycharm 项目启动虚拟环境及包安装】

首先创建虚拟环境虚拟环境理解起来就是每个项目使用到的全部不同版本的包组成的一个环境,这样每次打开不同项目就可以使用单独的环境,非常清晰,不会混乱,其表现在项目中的venv文件夹。虚拟环境中安装项目依赖包点击上面的直接下载不足为什么经常会失败,且特别慢,另外geometric包需要先安装其他的一些包,导致一直装了很久也没有把这些包顺利按对应版本安装好为了加快安装速度,可以先找到对应的whl文件,然后直接安装,对于geometric包,需要先安装4个其他的依赖包,然后再安装。pytorch-g

2022-03-07 22:15:34 641

互联网+商业计划书样本.zip

互联网+优秀商业计划书样本

2021-06-25

互联网+&挑战杯商业计划书.zip

互联网+&挑战杯商业计划书优秀案例

2021-06-25

JavaWeb入门到实战.zip

超级好的学习教程,b站楠哥讲的java对应课件pdf和 java代码(一个javaweb可运行系统)

2021-06-25

1989-2020美赛建模论文.zip

美赛建模论文

2021-06-25

挑战杯优秀作品.zip

word和pdf文件覆盖多个优秀作品案例,具有较大参考价值

2021-06-25

中国“互联网+”大学生创新创业大赛.zip

大赛评审规则,往届获奖项目介绍,热点问题和样本模板。

2021-06-25

报刊订阅管理系统_数据库原理与应用报告.pdf

一个C#数据库系统的实验报告,内容完整,体系清晰明了,便于参考做数据库课程设计

2021-06-25

清风数学建模课件.zip

国赛美赛数学建模学习资料,包括matlab程序和讲解课件

2021-06-25

arxiv-metadata-oai-2019.json.zip

Datawhale组队学习21期_学术前沿趋势分析Task1_论文数据统计_数据文件

2021-01-16

(挑战杯)丁颖杯复赛60支队伍作品申报书.zip

挑战杯等类似创业比赛优秀作品申报案例

2020-05-28

网易(类似商业计划书).zip

行业分析报告,可以仿着写一些商业计划书

2020-05-28

2018SCI培训讲座PPT.pdf

2018SCI培训讲座PPT.pdf

2020-05-28

vision-language-navigation-with-self-supervised-auxiliary-reasoning-tasks.pdf

视觉语言导航论文,得奖佳作。

2020-05-28

MCM美赛-资料汇总.zip

美赛资料包,有详细的各种学习资料,非常全面

2020-05-28

第五届“挑战杯”创业计划书(决赛版).doc

挑战杯创业计划书,一些文档的整理,本来还是发压缩包好,这次先试一试了 挑战杯

2020-05-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除