图神经网络
文章平均质量分 79
A half moon
这个作者很懒,什么都没留下…
展开
-
HGMF: Heterogeneous Graph-based Fusion for Multimodal Data with Incompleteness【多模态 异质图 不完整数据学习】
随着数据收集技术的进步,从多个来源收集的大量多模数据变得可用。这种多模态数据可以提供补充信息,从而揭示现实世界主体的基本特征。因此,多模态机器学习已成为一个活跃的研究领域。已经开展了大量工作,以利用多模交互和整合多源信息。然而,由于各种原因,例如传感器损坏、数据损坏和记录中的人为错误,现实世界中的多模式数据通常会缺少模式。有效地集成和分析不完整的多模态数据仍然是一个具有挑战性的问题。我们提出了一种基于异构图的多模式融合(HGMF)方法,以实现异构图结构中不完整数据的多模式合并。原创 2022-10-06 22:37:09 · 1019 阅读 · 0 评论 -
【论文笔记】动态图神经常微分方程 Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs
多元时间序列预测在能源消耗和交通预测等实际应用中一直受到了广泛的关注。虽然最近的方法显示出良好的预测能力,但它们有三个基本的限制。(i).离散的神经结构:交错使用单独参数化的空间和时间块来编码丰富的潜在模式,会导致不连续的潜在状态轨迹和更高的预测数值误差(ii).高复杂性:离散方法使具有专用设计和冗余参数的模型复杂化,导致了更高的计算开销和内存开销。(iii).依赖于图的先验:依赖于预定义的静态图结构限制了其在现实应用中的有效性和实用性。在本文中,我们通过提出一个用动态图神经常微分方程(MTGODE)预测多原创 2022-06-01 16:14:53 · 2820 阅读 · 0 评论 -
【论文笔记】多元时间序列预测 图结构推断 A Study of Joint Graph Inference and Forecasting
A Study of Joint Graph Inference and Forecasting1.摘要:我们研究了一类最近的模型,它使用 图神经网络(GNNs) 来改进对多元时间序列的预测。这些模型背后的核心假设是,在时间序列(节点)之间有一个潜在的图,它支配着多元时间序列的演化。模型通过以不同的方式参数化一个图,最终目的都在于提高预测质量。我们在预测任务上比较了这类参数化方法的四个最新模型。此外,我们执行消融实验来研究它们在不断变化条件下的行为。例如,不使用图结构学习模块而直接提供数据之间的关系。基原创 2022-05-31 20:49:18 · 458 阅读 · 0 评论 -
【图神经网络的设计 文献理论创新总结】
1.图神经网络的设计角度AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models 【 ICLR 2021】创新点: 将传统机器学习方法(AdaBoost)与GNN结合,提出AdaGCN,AdaGCN在所有层之间共享相同的基本神经网络结构,能够在一定程度上解决过平滑问题。摘要: 深度图模型仍是一个有待研究的问题,关键之处在于如何有效地汇聚来自多跳邻居节点的特征信息。在本文中,通过将AdaBoost融入到图网络中提出了一个类似于原创 2022-03-21 11:06:17 · 2008 阅读 · 0 评论 -
图神经网络基础——(一)图论基础
首先,先推荐一个非常好的公众号:深度学习与图网络,其中真的对图神经网络的介绍非常全面,而且易懂,连续刷里面的一些文章,对GNN的体系差不多就建立的差不多了~尤其是其中的这篇渐进式总结的入门干货分享!!干货分享|深度学习与图网络从入门到进阶【内容丰富】 ,我当时按照顺序看了一上午,真的觉得思路清奇地清晰,完全是下一篇文章的一个算法改进了上一篇更旧的模型的一些不足。 里面资料也很丰富,强烈推荐了~另外,对图卷积部分做个简单的小结。(参考了较多他人成果)从空域角度看GCN空域,谱域卷积,两者..原创 2022-03-15 11:21:35 · 2306 阅读 · 0 评论
分享