机器学习基础
文章平均质量分 59
A half moon
这个作者很懒,什么都没留下…
展开
-
CLIP 对比学习 源码理解快速学习
是相似的,或者说这两个东西是一个意思,然后把这两个当成正样本,计算正样本的相似度要越大越好,即学习到的图像和文本的潜在特征表示进行运算后得到的相似度要越大越好,所以反向约束表示图像和文本的特征要能够彼此互通,图像的特征向量能够跟文本的特征向量在语义上能够互相认识彼此,从而认出彼此是相似的。优化方向:分母的负样本相似度越小越好,小到0可忽略不计,这时正样本上下抵消为1,log1=0,loss为0.最终计算contrastive loss,loss计算加上 -log。si,i :正样本相似度。原创 2023-12-15 16:15:06 · 2089 阅读 · 0 评论 -
PyCharm:如何将一个项目用作另一个项目的依赖项?
我已将 xyz 的主目录路径添加到用于项目 abc 的解释器的 PYTHONPATH 中: Settings->Project->Project Interpreter->Show All->Interpreter Paths->Add Path。在项目 abc 中,我们有一个带有函数 f1() 的模块 abc.mod_a,在项目 xyz 中,我们有一个带有函数 f2() 的模块 xyz.mod_b。我已将 xyz 添加为项目 abc 的项目依赖项: 设置->项目->项目依赖。它将为您处理所有依赖项。转载 2023-02-28 21:27:36 · 1588 阅读 · 0 评论 -
医疗NLP方向讲座报告学习整理记录
首先听了一个医学知识图谱构建的报告,感觉分享人逻辑非常清晰,并且能够一句话说出模型算法的核心原理及优缺点,也能很清楚地阐述论文研究在做怎么样一件事,优化的主要方向是哪些点,并且能感受到他对领域内其他相关算法也十分熟悉,收获很多。2.多听几场报告感觉就能够较整体地快速了解到一个领域里目前的相关基本情况,从而有宏观的一个印象,去看论文也更心里有数。1.听论文报告讲座真的学习体验感很好,对自己读论文写论文也有很大帮助。然后听了听多模态预训练相关的一个报告。原创 2023-01-23 21:37:13 · 204 阅读 · 0 评论 -
机器学习概论--自总结版
机器学习的定义对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适,优质,大量的经验E,该程序对于任务T的性能逐步提高。 推荐经典书籍:Tom MichaelnMitchell 1997 机器学习直白翻译:用计算机做个“系统”,根据“学习资料”(训练数据)进行学习,随着日复一日的学习(训练次数的不断提升),这个“系统”水平不断提高(系...原创 2020-04-14 22:54:48 · 375 阅读 · 0 评论
分享