Python数据分析27——seaborn可视化(三)之分类散点图

seaborn 绘制分类图

准备工作

在这一篇博客中,依旧使用seaborn模块自带的小费数据集来绘图。

下面,先导入相关模块并生成小费数据集的DataFrame对象。

import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
tips = sns.load_dataset('tips')
tips.head()

在这里插入图片描述

分类散点图

在 seaborn 模块中,通过 striplot 函数可以绘制变量在每个类别中的值得散点图。下面,绘制 totall_bill 在 day 上的值得分类散点图。

sns.set(style='white', color_codes=True)
sns.stripplot(x='day', y='total_bill', data=tips)

在这里插入图片描述
上面第一句代码是设置样式,然后第二句代码是指定X轴和Y轴变量分别是数据来源data中的哪两项。显然,由于数据多,很多点是看不清楚的。此时,可以设置jitter=True,就可以看到更多的数据点位。

sns.stripplot(x='day', y='total_bill', data=tips, jitter=True)

在这里插入图片描述
如果你还不满足,一定要看清楚所有的数据点位,可以通过swarmplot() 函数绘制图表。

sns.swarmplot(x='day', y='total_bill', data=tips)

在这里插入图片描述通过swarmplot() 函数的hue 参数可以多嵌套一个分类变量,它会以不同的颜色在图表中呈现。

sns.swarmplot(x='day', y='total_bill', data=tips, hue='sex')

在这里插入图片描述

需要注意的是,它会自动添加上图例,很好用。

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页