问题描述
我有一个用于模型训练的DataFrame如下图所示:
其中的country、province、city、county四列其实是位置信息的不同层级,应该合成一列用于模型训练
方法:
parent_teacher_data['address'] = parent_teacher_data['country']+parent_teacher_data['province']+parent_teacher_data['city']+parent_teacher_data['county']
就可以把四列合并成新的列address
如果某一列是非str类型的数据,那么我们需要用到map(str)将那一列数据类型做转换:
dataframe["newColumn"] = dataframe["age"].map(str) + dataframe["phone"] + dataframe["address”]
作者:AndrewHR
来源:CSDN
原文:https://blog.csdn.net/gangyin5071/article/details/79601386
我的实践:
1、这是data数据,有很多列,我现在需要把每一个column的value_counts统计出来,并放在一个datafra

本文介绍了如何将pandas DataFrame的country、province、city、county四列合并为一个新的address列。通过使用str concatenation,确保所有列数据类型正确后进行合并。作者分享了具体的操作步骤,适用于将不同层级的位置信息整合,以优化模型训练的数据输入。
最低0.47元/天 解锁文章
10万+

被折叠的 条评论
为什么被折叠?



