数据可视化-tableau

环境配置

基础知识

数据可映射的图形类型
位置: x,y轴反映位置
长度: 柱形图
角度: 饼图圆环图
方向 : 折线图,向上向下
形状 :用来做区分,形状区分
面积和体积: 代表大小
颜色和深浅: 不同颜色深浅用度量,颜色不同用维度
可视化辞典
在这里插入图片描述
可视化辞典库

绘图

单图

怎么拖出什么图是关键
柱状图
①比大小,列为维度,行为度量,可以选择平均值总和计数等
在这里插入图片描述
条形图
点击转置就可以
下钻如何做到,维度右击创建分层结构,拖拽想要分层的数据即可
在这里插入图片描述
热力图(突出显示表)
增加数值颜色范围,改变图形为方块,右边编辑颜色设置中心点和倒序
在这里插入图片描述
树形图
使用智能显示,或者维度用标签,度量作为大小
在这里插入图片描述
标签文本可以修改展示内容
在这里插入图片描述

日历热力图在这里插入图片描述
气泡图/词云/方片图
维度为标签,度量为大小和颜色,通过方形、圆形和文字来绘制气泡、词云和方片图
在这里插入图片描述
在这里插入图片描述

动态气泡图
随着时间变化,页面一定要设置时间,右边历史记录可以设置轨迹
在这里插入图片描述

饼图
修改为饼图,一般使用百分比(度量值右击使用快速表计算,总额百分比)展示,使用ctrl进行已计算好字段的复制
在这里插入图片描述
圆环图
①创建记录数,值为1,拖拽复制两列最小记录数,修改图二的颜色,点击合并双轴
在这里插入图片描述
堆积图
绝对百分比上图和相对百分比下图
修改行的结果改变图表形状,标签只是修改叫什么,编辑表计算修改,表向下就是单一维度计算,横穿就是整体计算占比(总额百分比)
在这里插入图片描述
折线图
①折线图日期,上面的年月日是标签,下面的是所有值
②折线图数据分析可以增加趋势、预测、群集等
③标记改为区域,加入维度颜色,会形成面积图
在这里插入图片描述
散点图
时间为详情,维度为颜色
在这里插入图片描述
直方图
直方图就是对数据进行等比例分类
①度量先创建数据桶,按照推荐的设置步长,桶的目的是离散化
在这里插入图片描述
地图
地图直接点地理位置就会生成经纬度,两个图混合,使用双轴合并,加入维度最好是字符串类型

在这里插入图片描述
标靶图
需要把目标值设置到详细中,增加参考线为目标值最大值
也可增加分布区间(数值的百分比)和参考区间(纯值)
在这里插入图片描述

甘特图
甘特图展示供应商交互延期天数(分供应商和零部件)
列是供应商交货日期,行是供应商名称和物资类别,计算延期交货天数大小
在这里插入图片描述

瀑布图
展示整体利润每一部分的占比,首先行是汇总计算字段,选择甘特图形,方块的大小就是利润的负值,最终修改颜色即可
在这里插入图片描述
分层与分组与分集
分层设计级联关系,自上而下,年月日,公司-部门-科室-组
分组就是将一类划分为一组,比如1班和二班划分为优等班
分集

直方图+概率分布
记录数选择汇总求和+辅助计算字段选择总额百分比
在这里插入图片描述
旋风图

在这里插入图片描述
2、将 新字段 东北销售额、西北销售额拖入列 ,子类别拖入行
3、右键左图横坐标轴,编辑轴-倒序(核心在一个轴倒序)
4、将销售额拖入颜色

每个维度单独排序取前五
需要优先创建排序字段-》(区域向下横穿)拖拽到详细信息中,然后按照故障次数进行排序,否则会整体排序在这里插入图片描述
在这里插入图片描述
日历图
添加链接描述
在这里插入图片描述

成对柱状图
1.首先对数据进行转职,dt列不变,其他列转置成行,统称为指标类别,值单独一列为指标值
在这里插入图片描述
2.计算指标月度距离,其实就是基于相同的日期不同的类别进行距离错位,精确到天的话,增加减少数值不宜过大,否则会重叠

CASE [mark]
//设置合适的距离让两个柱形图分开
WHEN "点赞" THEN DATETRUNC('day',[etl_dt]) - 0.1
WHEN "签到" THEN DATETRUNC('day',[etl_dt]) + 0.1 
ELSE DATETRUNC('day',([etl_dt])) 
END

3.将月度距离拖拽为列,其他值聚合计算,调整条形图大小即可
tableau成对柱状图
如何画成对柱状图

仪表板

原则

①区分用户,不同等级需求不同
②区分主次,位置颜色大小形状
③真实准确,坐标轴从0开始,成本利润悬殊
④符合大众审美和认知,避免使用3D效果,五秒原则(5s能看懂)恰到好处的说明
⑤少即是多
⑥明确仪表盘受众

### 使用 Tableau 创建数据可视化大屏的最佳实践 #### 准备阶段 在准备创建数据可视化大屏之前,确保拥有高质量的数据源至关重要。这不仅限于获取原始数据,还包括对数据进行必要的清洗和预处理工作,以便更好地支持后续的可视化操作[^3]。 #### 导入数据 启动 Tableau 后,通过连接到本地文件(如 Excel 或 CSV)、数据库或其他在线资源来加载所需的数据集。对于复杂或多样的数据源,可以利用 Tableau 的联合功能将多个表关联起来,从而构建更全面的数据视图[^4]。 #### 设计布局 规划好仪表板的整体架构是成功的关键之一。合理安排各个图表的位置与大小,使整个页面既美观又易于理解;同时考虑加入筛选器、参数等功能组件让用户能互动探索更多细节信息[^5]。 #### 构建图表 依据具体业务场景选取合适的图形表达方式,比如柱状图适合比较类别间的差异,折线图则可用于展现时间序列上的变化趋势等。此外,在制作过程中要注重色彩搭配以及标签标注等方面的设计原则,提高可读性和吸引力[^2]。 #### 添加交互元素 为了让观众更加深入地参与到数据分析之中,可以在大屏上设置一些交互式的控件,例如下拉菜单选择不同的维度查看相应结果,或是点击某个区域放大显示特定部分的内容详情。这种动态效果有助于增强用户的参与感并促进有效沟通交流。 #### 发布分享 完成所有编辑之后,可以通过多种途径发布成品:既可以保存为静态图像供报告使用,也能打包成 .twb(x) 文件形式便于他人下载安装体验完整版本;更重要的是还可以上传至 Tableau Server 或 Public 平台实现广泛传播共享。 ```python import pandas as pd from tableauhyperapi import HyperProcess, Connection, CreateMode, Telemetry # 假设有一个名为 'data.csv' 的CSV文件作为输入数据源 df = pd.read_csv('data.csv') with HyperProcess(telemetry=Telemetry.SEND_USAGE_DATA_TO_TABLEAU) as hyper: with Connection(endpoint=hyper.endpoint, database='output.hyper', create_mode=CreateMode.CREATE_AND_REPLACE) as connection: # 将Pandas DataFrame写入Hyper文件中 table_name = "MyTable" df.to_sql(table_name, con=connection, index=False) print("Data has been successfully written into Hyper file.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值