python机器学习 - 深度学习
掌握keras,tensorflow,pytorch等重点包,掌握深度学习的系统概念和使用python进行深度学习任务解决问题
这个阶段目前的参考资料是hands on python machine learning
ZachhhBweg
时间宝贵,不多哔哔
展开
-
使用Pseudo Labeling(伪标签)提高模型的分类效果
文章目录Pseudo Labeling原理实际应用Pseudo Labeling pipeline写在最后Pseudo Labeling原理目前为止,大部分的机器学习和深度学习分类问题都需要大量的数据进行训练,而人类往往通过认识几个新鲜事物就能够很好地进行判断,这主要是由于人类可以由自己的判断产生的结果进行推断和强化但是机器面对未知的对象却不行。这种相差巨大的判别机制让人们开始思考机器进行认知分类任务的原理能够有所改进,于是Pseudo Labeling应运而生。简而言之,Pseudo Labelin原创 2020-07-12 17:03:31 · 2659 阅读 · 0 评论 -
fastai2019深度学习课堂笔记
文章目录deep learning pipeline获得源数据数据处理处理源数据data segmentationprogressive resizingnormalizationdatablocks模型构建16位浮点运算模型训练fit_one_cycle模型评估训练集误差和验证集误差模型调试实战经验作为自学党,走入深度学习所面临的主要问题不是理论知识多少,而是怎样理论结合实际,也就是说:怎么写代码。为此,基于pytorch高度封装的fastai是很好的选择,其相关课程内容也注重代码,能够比较好地帮助初学原创 2020-07-13 10:55:56 · 1280 阅读 · 3 评论
分享