ZachhhBweg
码龄6年
关注
提问 私信
  • 博客:73,649
    73,649
    总访问量
  • 35
    原创
  • 524,495
    排名
  • 246
    粉丝
  • 1
    铁粉

个人简介:时间宝贵,不多哔哔

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:湖南省
  • 加入CSDN时间: 2018-12-17
博客简介:

weixin_44145222的博客

查看详细资料
个人成就
  • 获得45次点赞
  • 内容获得33次评论
  • 获得253次收藏
  • 代码片获得288次分享
创作历程
  • 2篇
    2021年
  • 30篇
    2020年
  • 3篇
    2019年
成就勋章
TA的专栏
  • python机器学习 - 走进机器学习
    13篇
  • python机器学习 - 用python深入机器学习的世界
    11篇
  • python机器学习 - 深度学习
    2篇
  • 关于coding
    3篇
  • 笔记
    1篇
  • scripts
  • 我也会写点前端
    1篇
  • 吴恩达课程系列
  • 人工智能
  • 电脑与生活
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习神经网络数据分析
  • 硬件开发
    fpga开发
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

tailwind css + vuejs3实现过渡(transition)效果

tailwind css + vue3 = easy and beautiful transitions不得不说,tailwind css 和vuejs可真是绝配,在transition效果的实现上也是如此。本文将简洁地分享使用tailwindcss 和 vuejs 3实现过渡的干货。以下的知识讲帮助读者更轻松地掌握文中的内容:vue.js3 与 tailwind css 的搭建与整合(使用vite)。css基础,尤其关于transition及transform的相关知识。代码话不多说,直接
原创
发布博客 2021.04.09 ·
1981 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

ASFG - AI可以帮你自动生成字幕文件

ASFG - 字幕文件自动生成系统与大数据文摘合作引进fastai课程期间,我第一次了解到了字幕生成和翻译的繁琐和困难,其中仅打时间轴这一项内容,随文字量需要花费原视频时长1.5-2.5倍的时间,日常看似不起眼的字幕制作需要花费幕后人员大量的功夫。如此繁重的工作,如今的AI能够做些什么呢?在这个想法的推动下,考研完我开始尝试这个项目。项目地址:github,欢迎星标 ????直接上手当前ASFG还处于裸奔阶段,尚未打包为可以独立运行的程序,因此需要python环境的支持(括号部分为构建程序运行环境
原创
发布博客 2021.02.15 ·
3301 阅读 ·
2 点赞 ·
14 评论 ·
5 收藏

Gradient Boost回归实例化解析

文章目录Gradient Boost特性 - 相对于AdaBoostGradient Boost原理Gradient Boost生成原理Gradient Boost 数学原理输入本文通过文字方式记录YT StatQuest关于Gradient Boost的系列讲解,方便总结回顾视频内容。理性前提为了解决策树和AdaBoost的相关内容。Gradient Boost有广泛的解释方法,此为最常用而且比较好理解的一种。多图预警Gradient Boost特性 - 相对于AdaBoostGradien
原创
发布博客 2020.08.11 ·
1056 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

Adaboost实例化完全解析

文章目录什么是Adaboost?如何生成Adaboost?获得排序顺序category特征continual特征影响力分配总过程使用AdaBoost预测本文前提假设已了解决策树和随机森林。图片资源来自YT StatQuest。什么是Adaboost?Adaboost是由多个决策树桩(最简单的二分决策树)组成的森林体系(forest):相比于随机森林,Adaboost主要体现出了以下随机森林不具备的特性:全部使用weak leaners - 也就是决策树桩 - 来进行分类,每个特征对应一个树桩
原创
发布博客 2020.08.09 ·
668 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用Pseudo Labeling(伪标签)提高模型的分类效果

文章目录Pseudo Labeling原理实际应用Pseudo Labeling pipeline写在最后Pseudo Labeling原理目前为止,大部分的机器学习和深度学习分类问题都需要大量的数据进行训练,而人类往往通过认识几个新鲜事物就能够很好地进行判断,这主要是由于人类可以由自己的判断产生的结果进行推断和强化但是机器面对未知的对象却不行。这种相差巨大的判别机制让人们开始思考机器进行认知分类任务的原理能够有所改进,于是Pseudo Labeling应运而生。简而言之,Pseudo Labelin
原创
发布博客 2020.07.12 ·
2659 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

fastai2019深度学习课堂笔记

文章目录deep learning pipeline获得源数据数据处理处理源数据data segmentationprogressive resizingnormalizationdatablocks模型构建16位浮点运算模型训练fit_one_cycle模型评估训练集误差和验证集误差模型调试实战经验作为自学党,走入深度学习所面临的主要问题不是理论知识多少,而是怎样理论结合实际,也就是说:怎么写代码。为此,基于pytorch高度封装的fastai是很好的选择,其相关课程内容也注重代码,能够比较好地帮助初学
原创
发布博客 2020.07.13 ·
1280 阅读 ·
0 点赞 ·
3 评论 ·
0 收藏

Windows 10 vscode settings sync报错

今天换电脑,把vscode装到D盘,却无论如何无法使用settings sync同步设置首先是无法连接网络登录GitHub,于是百度通过手动添加gist id和token实现了登录之后alt shift d还是只会弹出错误,分析一波错误信息,尝试把D盘上的code exe文件设置为通过管理员方式运行,再下载就OK了!也许把vscode安装到C盘上就不会有这样的问题~最后,下了几个插件不动了,卡在第五个插件就是无法再下载了。。。于是进入github gist 中手动强行删除了插件对应的文件内容。终于,除
原创
发布博客 2020.06.01 ·
1072 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

词袋模型(bag-of-words)--- python自然语言处理基础

文章目录词袋模型词袋模型
原创
发布博客 2020.05.05 ·
2961 阅读 ·
1 点赞 ·
0 评论 ·
14 收藏

python机器学习 - 走进集成学习的世界(装袋法 - bagging,自适应增强 - adaptive boosting)

文章目录集成学习,who are you?多数投票集成学习,要你何用?source:python machine learning 3rd集成学习是机器学习领域相当重要的一个概念,本篇文章中所关注的集成学习就是使用多个模型,采用同一训练集进行训练后,对样本运行多数投票的方式来确定分类,如果你不关注多数投票而是渴求更加高深莫测的算法,那么这盘基础性的文章将不值得你花费时间集成学习,who ar...
原创
发布博客 2020.04.19 ·
1105 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

一篇文章总结python机器学习类不平衡问题的处理-class imbalance(ROC,混淆矩阵,f1 score等)

文章目录迷惑矩阵准确度,召回率和f1 scoreROC多类分类问题-加权均分其它方法迷惑矩阵准确度,召回率和f1 scoreROC多类分类问题-加权均分其它方法
原创
发布博客 2020.04.15 ·
1406 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

一篇简明的python机器学习模型评估与超参数调试基础总结(交叉验证,学习曲线,网格搜索等)

文章目录交叉验证交叉验证原理选择Kpython实现分层交叉验证source:python machine learning 3rd高方差和高偏置是机器学习碰到的常见问题,而在高方差及高偏置之间寻找一个平衡点从而对模型进行准确的预测涉及到了我们对模型的评估(找到问题)和对超参数的调整(解决问题),其中最典型的超参数就是正则系数λ\lambdaλ,它的大小直接影响了模型在高方差和高偏置之间的表现。...
原创
发布博客 2020.04.13 ·
1312 阅读 ·
2 点赞 ·
1 评论 ·
24 收藏

想知道最新的steam免费领取游戏?python爬虫来帮忙

文章目录前言代码特性源码还有更多前言疫情在家期间,玩玩游戏无疑是很好地放松休闲手段。而许多游戏在steam等平台上则通过限时免费领取的吸引更多玩家的参与,再加上上次差点就错过古墓丽影9的免费领取时间,看来我又需要python来做一个自动化爬虫小帮手了!爬取免费游戏界面当然可以直接爬取steam,但是epic等发行平台也有许多相当不错的免费游戏。想要全面地了解世界范围内的限时免费领取游戏?ep...
原创
发布博客 2020.04.11 ·
1690 阅读 ·
3 点赞 ·
2 评论 ·
4 收藏

简明KPCA及其python实现(核主成分分析)

文章目录KPCAKPCA, PCA与LDA核心方程RBF KPCApython实现KPCAsource:python machine learning 3rdKPCA核主成分分析-kernel principal component analysis,是一种用于非线性分类的降维工具,实现非线性映射降维右图维典型的非线性分类问题KPCA, PCA与LDAPCA:主要用于线性非监督学习...
原创
发布博客 2020.04.07 ·
13327 阅读 ·
13 点赞 ·
6 评论 ·
103 收藏

线性判别分析LDA(linear discriminant analysis)与二次判别分析QDA(quadratic discriminant analysis)

文章目录LDA与PCALDA python实现Source: Python Machine Learning 3rdLDA与PCALDA和PCA都用于数据维度降低LDA可以视为比PCA高级的分类技巧,但在实践情况下,使用PCA比使用LDA在图像识别等领域表现更好LDA用于监督学习,而PCA用于非监督学习PCA寻找最大方差的正交分量轴,LDA寻找优化分类的特征子空间LDA pyt...
原创
发布博客 2020.04.06 ·
2411 阅读 ·
0 点赞 ·
0 评论 ·
24 收藏

主成分分析-python机器学习实现(PCA)

文章目录numpy + pandas实现1. 标准化原始数据集2. 获得协方差矩阵3. 获得特征向量和特征值4. 按照特征值降序排列相应的特征向量5. 选择k个特征值最大的特征向量6. 获得k维矩阵,W7. 使用W实现维度转换sickit-learn直接实现代码思路来自Python Machine Learning 3rd,本人只是做了一些修改numpy + pandas实现我们以panda...
原创
发布博客 2020.04.01 ·
1542 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

python实现SBS(sequential backward selection)

文章目录什么是SBSSBS原理源码结语什么是SBSSBS是减少数据维度的最佳解决方案,它能够实现将数据的特征维度从m降到k的功能SBS原理降低一个维度,使用剩下的维度进行预测,获得结果分数重置维度,重复第一步,其中降低另一个维度,直到获得了所有的降低其中一个维度获得的分数选择第二步中得分最高的组合检查当前数据维度k是否等于目标维度,如果等于,当前特征组合则为目标特征组合,否则从第一...
原创
发布博客 2020.03.31 ·
1785 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

棒棒的二维数据可视化分类模型

文章目录源码优势局限代码实现原理预处理创建标记和颜色生成器确定坐标轴数据范围基于数据范围创建网格坐标获得预测机器网格坐标绘制绘制等高线图绘制样本分布散点图高亮测试集示例SVM最大边界设定截止参数的SVM源码源码来自Python Machine Learning 3rd,Chapter 3,自己加入了一些理解和修改优势适用于大多数分类算法模型,对不同参数的统一模型都能够绘制出不同的决策边界...
原创
发布博客 2020.03.29 ·
2027 阅读 ·
2 点赞 ·
0 评论 ·
8 收藏

python实现SGD(stochastic gradient descent)算法

文章目录源码知识点1. 实现参数(权重)矩阵初始化小值:2. 打乱数据3. 实现随机梯度下降4. 使用函数实现数据处理步骤5. 在保持初始化后权重不变的情况下实现训练6. 返回自己结果源码此为适应机使用随机梯度下降的python实现,代码主要来源于Python Machine Learning 3rd(此书包含大量python实现算法的源码,宜啃读)自己把代码又弄了一遍,欢迎想看或者看过这本...
原创
发布博客 2020.03.25 ·
6961 阅读 ·
6 点赞 ·
2 评论 ·
29 收藏

machine learning work-Andrew Ng.zip

发布资源 2020.03.25 ·
zip

感知器和适应机(Perceptron & Adaline)

文章目录共同点区别点代码演示感知器适应机共同点感知器和适应机都是用于线性二元分类问题的模型感知器和适应机都需要使用阈值函数,确定分类标准图中θ\thetaθ为阈值都是逐步学习,优化参数区别点适应机使用激活函数对输入数据多进行了一次处理,再使用激活函数产生的误差值进行参数优化,感知器则是直接利用分类结果进行参数优化适应机通过使用误差能够对输入数据进行连续优化,并且通过激活函数...
原创
发布博客 2020.03.25 ·
1392 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏
加载更多