激光SLAM里程计算法总结(ICP、NDT与运动畸变)

本文总结了激光里程计中的关键配准算法,包括ICP、PL-ICP和NDT。ICP是一种迭代最近点算法,但可能陷入局部最优;PL-ICP以点到线误差为目标,精度更高但对初始值敏感;NDT假设点云服从正态分布,寻找最佳姿态匹配。此外,还讨论了点云运动畸变及其校正方法,指出配准时需要一定重叠度并考虑传感器运动导致的坐标差异。
摘要由CSDN通过智能技术生成


在导航系统中,里程计(Odometry)数据用来 估算机器人位置随时间的改变量

一、ICP配准

ICP (Iterative Closest Point)迭代最近点算法;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
PCL点云库中ICP方法的使用:

  1. setMaximumIterations, 最大迭代次数,icp是一个迭代的方法,最多迭代这些次;
  2. setEuclideanFitnessEpsilon, 设置收敛条件是均方误差和小于阈值, 停止迭代;
  3. setTransformtionEpsilon, 设置两次变化矩阵之间的差值(一般设置为1e-10即可);
  4. setMaxCorrespondenaceDistance,设置对应点对之间的最大距离(此值对配准结果影响较大)。
    在这里插入图片描述
    (1)ICP 方法需要配准的两个点云具有一定的重叠度;
    (2)ICP 选取的所有点进行配准,速度较慢;
    (3)易收到噪声干扰,陷入局部最优;

二、PL-ICP配准

在这里插入图片描述
PL-ICP是二阶收敛,ICP是一阶收敛
PL-ICP对初始值更敏感
以点到线的误差为目标函数,PL-ICP的求解精度更高

在这里插入图片描述

三、NDT配准

正态分布变换 (Normal Distribution Transform)
与ICP不同, NDT 假设点云服从正态分布,我们的目的是找一个姿态,使得当前扫描点位于扫描参考平面的可能性最大。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最后概率密度函数可以表示为:
在这里插入图片描述
目标函数为:
s ( p ⃗ ) = ∑ k = 1 n p ~ ( T ( p ⃗ , x ⃗ k ) ) s(\vec{p})=\sum_{k=1}^{n}\tilde{p}(T(\vec{p},\vec{x}_k)) s(p )=k=1np~(T(p ,x k))
在这里插入图片描述
PCL点云库中NDT方法的使用:
(1)NDT 方法需要配准的两个点云具有一定的重叠度;
(2)NDT 允许两个点云存在少量差异;
在这里插入图片描述

四、点云的运动畸变

点云运动畸变产生的原因是一帧点云中的点不是在同一时刻采集的,在采集过程中,雷达随着载体在运动,但是雷达点测量的是物体和雷达之间的距离,所以不同激光点的坐标系就不一样了,会导致周围物体产生重影
在这里插入图片描述
对于地面点而言,未去畸变时,表现成完整的圆(下图中左边未去畸变,右边为去畸变):
在这里插入图片描述
点云去畸变基本方法:
在这里插入图片描述在工程中为了减少运动前后方向的畸变,通常在安装时使y轴朝向载体的左右两侧; ( 2 ) (2) (2)中提到的相对位姿变换 ( R , T ) t + 1 t (R,T)^t_{t+1} (R,T)t+1t可以通过IMU、RTK以及轮速计获得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值