题目描述:
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。
为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -228 到 228 - 1 之间,最终结果不会超过 231 - 1 。
例如:
输入:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
输出:
2
解释:
两个元组如下:
- (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
方法1:
主要思路:
(1)提前将A,B数组中的数字之和使用unordered_map进行统计存储;
(2)再对C,D之和的负数在unordered_map中进行存在性的统计;
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
unordered_map<int,int> mp;
for(int& a:A){
for(int& b:B){
++mp[a+b];//先进行统计A,B数组中的和
}
}
int res=0;
for(int& c:C){
for(int& d:D){
if(mp.count(-c-d)){
res+=mp[-c-d];//再对C,D数组中的和的负数在unordered_map中的存在性进行统计
}
}
}
return res;
}
};
873

被折叠的 条评论
为什么被折叠?



