题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
0 <= n <= 100
方法1:
主要思路:
(1)青蛙跳到当前台阶有两种方式,一种是从前一个台阶跳过来,另一种是从前两个台阶跳过来,则到当前台阶的方法就是到另外两个台阶的方法之和;
(2)故抽象出来就是斐波那契数列,注意求余操作即可;
class Solution {
public:
int numWays(int n) {
//处理特殊情形
if(n==0){
return 1;
}
if(n<3){
return n;
}
int cur=2;
int pre=1;
while(n-->2){
cur+=pre;
pre=cur-pre;
//注意求余操作,避免越界
cur%=1000000007;
pre%=1000000007;
//--n;
}
return cur;
}
};
本文探讨了青蛙跳上n级台阶的算法问题,通过斐波那契数列的原理,详细阐述了一种高效的求解方法,并提供了具体的代码实现。算法在计算过程中考虑了取模操作,以避免大数带来的溢出问题。
353

被折叠的 条评论
为什么被折叠?



