513 找树左下角的值

这篇博客介绍了两种方法来找到二叉树的最后一行最左边的值。方法一是通过层次遍历,利用队列保存每一层的节点,返回最后一层的最左边节点值;方法二是采用先序遍历,找到最深一层的第一个访问点。这两种方法都有效地解决了问题。

题目描述:
给定一个二叉树,在树的最后一行找到最左边的值。

示例 1:
输入:
在这里插入图片描述
输出:
1

示例 2:
输入:
在这里插入图片描述

输出:
7

注意: 您可以假设树(即给定的根节点)不为 NULL。

方法1:
主要思路:解题汇总链接
(1)使用队列实现层次遍历,保存最后一层的最左边的数字即可;

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    int findBottomLeftValue(TreeNode* root) {
        queue<TreeNode*> q;
        q.push(root);//初始化队列
        int res=0;
        while(!q.empty()){
            int size_cur=q.size();//当前队列的长度,既当前层的长度
            res=q.front()->val;//当前层的最左边的元素
            while(size_cur--){//更新队列
                root=q.front();
                q.pop();
                if(root->left){
                    q.push(root->left);
                }
                if(root->right){
                    q.push(root->right);
                }
            }
        }
        return res;
    }
};

方法2:
主要思路:
(1)使用先序遍历,找到最深的一层的访问点的第一个元素;

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void dfs(int cur_deep,int&max_deep,int&res,TreeNode*root){
        if(root==NULL){
            return ;
        }
        if(cur_deep>max_deep){//找到了更深的一层,保存第该层访问的第一个值
            res=root->val;
            max_deep=cur_deep;
        }
        dfs(cur_deep+1,max_deep,res,root->left);
        dfs(cur_deep+1,max_deep,res,root->right);
    }
    int findBottomLeftValue(TreeNode* root) {
        int max_deep=0,res=0;
        dfs(1,max_deep,res,root);
        return res;
    }
};
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值