EOSIO Dawn 4.0 发布

链客,专为开发者而生,有问必答!

此文章来自区块链技术社区,未经允许拒绝转载。
在这里插入图片描述
关于Dawn 4.0 RAM分配的反馈
一些社区成员表示担心,在其他任何人发现之前,有些人会通过购买便宜的内存来获得不合理的利润。为了缓解这种情况,我们建议那些人用一个非常有限的RAM供应来启动一个节点,然后在头几个月内逐步增加内存。如果RAM的供应量从32GB开始,然后在几个月内增长到1TB,那么RAM的价格可能会随着时间的推移而迅速下降到最初定价的3%。只有那些真正需要RAM或者在出价时考虑未来RAM供应的人才会购买初始RAM。无论哪种方式,没有人会获得“便宜”的RAM或“免费利润”。

测试网络状态
我们在欧洲,亚洲和美国拥有节点的内部测试网络一直运行良好,没有出现重大问题。

主观CPU资源使用率
在过去的几个月中,我们一直在试验客观的CPU计费。目标计费尝试以确定性方式计算交易使用的多个CPU指令。这具有很好的特性,可以确保对交易消耗的资源达成完全和明确的共识。这也是许多其他智能合约平台所使用的方法。

当我们在一年前引入EOSIO时,我们提出了使用主观尽力而为的调度。在这种模式下,每个区块生产者将测量执行交易所花费的挂钟时间并相应地向用户收费。为了保持对使用情况的一致性,生产者将向交易报告其计费的微秒数。

虽然客观计费对于消除账单纠纷和简化共识的能力非常好,但它有几个缺点,导致我们最终决定主观计费:

客观CPU度量通过引入额外的簿记降低了性能。
客观CPU度量在任何时候行为的实际成本与其目标近似之间存在不一致时引入攻击和拒绝服务向量。
客观CPU度量难以维护,升级并引入优化。
主观计费有其自身的挑战,特别是在共识系统中。幸运的是,我们找到了创新的解决方案,使其具有实用性其中一些挑战包括:

信任生产者准确报告使用情况。
解决生产者之间的意见分歧(由硬件/软件/负载引起)。
处理恶意生产者。
通过授权证明,预计区块生产商将成为具有合同义务和恶意行为法律后果的公共实体。进一步预计,所有21个活跃的生产者都会得到选择它们的社区的高度认可。

基于此,我们可以将一个信任元素放在所有这些元素上,充当CPU运行时间,而不是说事务运行需要多长时间。这意味着在正常运行条件下,我们可以相信所报告的运行时间在所有生产者的平均运行时间的合理误差范围内。

这种方法的批评者可能会指出,一个单一的恶意生产者可以构建一个无限循环的块,并报告它没有时间。为了防止这种情况,所有节点要为所有块放置几秒运行时间的上限;然而,即使有上限,也可能会导致网络中断。一个聪明的恶意生产者可能会构建一个块,使得50%的节点接受它并且50%拒绝它并因此分叉网络。

我们的团队已经分析了这些攻击媒介,并认识到运行时间非常长的块与网络延迟或中断很长时间没有区别。面对其他主观事物,在实际网络分叉中强健的任何一致性算法也应该是稳健的。由于带有BFT的DPOS可以承受网络分叉(例如,如果美国和中国暂时与更广泛的互联网断开连接),它可以在存在恶意的制造商的情况下生存。

有几种方法可以阻止生产商减少网络分叉的可能性,无论原因是大西洋的光缆断开还是恶意制造商,都有相同的方法。

维护多个连接
采用这种方法,如果跨大西洋的连接被切断,那么制作者会将数据包路由到太平洋。说到验证块,生产者应该有多个验证节点,并且从来没有两个节点试图验证同一个块。在最极端的情况下,每个生产者可以有专门的节点来处理来自每个同伴生产者的传入块。如果一个生产者用无限循环堵塞他们的验证通道,那么来自其他生产者的块仍然可以通过他们的独立和冗余通道。一旦不可逆块号移过坏块的块号(具有无限循环的块号),该节点可以强制块处理终止并退出。这将需要2/3以上的生产商才能成为拜占庭不断推进的共识.

维修或路线周围的损害
在切断其中一个光纤时,并不总是可以准备好接管多个光纤。在这种情况下,派遣一个团队来修复损坏的电缆并恢复连接。这可能需要更长时间,但最终连接恢复并且网络恢复达成共识,只不过有点停机时间。当涉及到恶劣的生产者造成恶作剧时,其他生产者可以简单地更新他们的配置,将坏的生产者列入黑名单,然后网络将恢复正常运行。将恶意生产者列入黑名单的过程甚至可以在他们观察到运行时间不合理的块时自动执行。最坏的情况是一个坏的BP在禁区边缘制作一个区块,这样只会导致一半BP将他列入黑名单。在这种情况下,最后的不可逆转的块将停止前进,而生产者决定哪个未完成的分支.

在所有上述情况下,依靠最后一个不可逆转块来确定终结点的用户是免于双重支出攻击的,并且网络经历的“停机时间”可能小于他们经历的典型“停机时间”公司或ISP。

我们认为,DPOS的治理流程和激励措施使得导致短期停机的恶意行为的概率低于导致所有区块链平台停机的互联网连接问题的可能性。至少在DPOS用户可以安然无知地在重新连接之后解开的少数连接。通过工作链的证明,网络拆分可能会导致对只依靠固定数量确认的人进行双重支出攻击。

系统合约更新
'eosio.system’合约是提供生产者注册,投票,放样和资源分配的实施方式。我们的团队一直致力于提供社区在创建链条时可能会选择采用的参考实施。在此版本中,系统合同已更新为包含以下内容:

没有人可以解锁,直到150,000,000.0000 TOKENS投票给至少一个制作人或代理人。
如果一个链希望将10%的TOKENS分配给Block.one,它将每年以1%的速率进行速率限制。
黑客帐户恢复和丢失的密码恢复
我们的团队创建了一种新方法来处理被黑客户帐户恢复和丢失的密码恢复,使几乎所有事情都可以在Web Assembly中实现。我们添加了一个新的内部API,它返回上次权限级别由帐户授权的情况。通过这些信息,智能合约现在可以实施执行30天不活动所需的逻辑,然后在完成Web Assembly的重设完全丢失密码之前提前7天通知。

我们删除了3个硬编码的动作处理程序,消除了潜在的错误,并可以稍后使用软更新轻松进行增强。丢失密码恢复的一个或多个实现可以在1.0发布之后作为单独的智能合约来提供。

现在在Github上可用
EOSIO Dawn 4.0现在可在GitHub上使用,因此开发人员可以开始测试他们的应用程序。

EOSIO 1.0即将推出
我们的团队正在全天候工作,在6月的第一周为市场带来稳定的EOSIO 1.0。这个初始版本将具备让任何人创建自己的基于EOSIO的区块链所需的一切。我们实施了“功能冻结”,接下来的几周将致力于运行和内部测试网络并修复发现的错误。我们的目标是确保最关键的功能坚如磐石。在EOSIO 1.0之后,我们将继续增强EOSIO软件的非分支变化,这将实现大量的可用性和基础设施改进。

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
内容概要:本文详细介绍并展示了基于Java技术实现的微信小程序外卖点餐系统的设计与实现。该系统旨在通过现代信息技术手段,提升外卖点餐管理的效率和用户体验。系统涵盖管理员、外卖员、餐厅和用户四个角色,提供了包括菜品管理、订单管理、外卖员管理、用户管理等功能模块。后台采用SSM框架(Spring + Spring MVC + MyBatis)进行开发,前端使用微信小程序,数据库采用MySQL,确保系统的稳定性和安全性。系统设计遵循有效性、高可靠性、高安全性、先进性和采用标准技术的原则,以满足不同用户的需求。此外,文章还进行了详细的可行性分析和技术选型,确保系统开发的合理性与可行性。 适用人群:计算机科学与技术专业的学生、从事Java开发的技术人员、对微信小程序开发感兴趣的开发者。 使用场景及目标:①为中小型餐饮企业提供低成本、高效的外卖管理解决方案;②提升外卖点餐的用户体验,实现便捷的点餐、支付和评价功能;③帮助传统餐饮企业通过数字化工具重构消费场景,实现线上线下一体化运营。 其他说明:该系统通过详细的系统分析、设计和实现,确保了系统的稳定性和易用性。系统不仅具备丰富的功能,还注重用户体验和数据安全。通过本项目的开发,作者不仅掌握了微信小程序和Java开发技术,还提升了独立解决问题的能力。系统未来仍需进一步优化和完善,特别是在功能模块的细化和用户体验
Retinex理论是计算机视觉和图像处理领域中一种重要的图像增强技术,由生理学家Walter S. McCann和James G. Gilchrist在20世纪70年代提出,旨在模拟人类视觉系统对光照变化的鲁棒性。该理论将图像视为亮度和色度的函数,分别对应局部强度和颜色信息。其核心思想是将图像分解为反射分量(物体自身颜色)和光照分量(环境光影响),通过分离并独立调整这两个分量来增强图像对比度和细节。 在Matlab中实现Retinex算法通常包括以下步骤:首先对输入图像进行预处理,如灰度化或色彩空间转换(例如从RGB到Lab或YCbCr),具体取决于图像特性;然后应用Retinex理论,通常涉及对图像进行高斯滤波以平滑图像,并计算局部对比度。可以采用多尺度Retinex(MSR)或单尺度Retinex(SSR)方法,其中MSR使用不同尺度的高斯滤波器估计光照分量,以获得更平滑的结果;接着对分离后的反射分量进行对比度拉伸或其他对比度增强处理,以提升图像视觉效果;最后将调整后的反射分量与原始光照分量重新组合,生成增强后的图像。如果存在“retinex.txt”文件,其中可能包含实现这些步骤的Matlab代码。通过阅读和理解代码,可以学习如何在实际项目中应用Retinex算法,代码通常会涉及定义图像处理函数、调用Matlab内置图像处理工具箱函数以及设置参数以适应不同图像。 在研究和应用Retinex算法时,需要注意以下关键点:一是参数选择,算法性能依赖于高斯滤波器尺度、对比度拉伸范围等参数,需根据具体应用调整;二是运算复杂性,由于涉及多尺度处理,算法计算复杂度较高,在实时或资源受限环境中需优化或寻找高效实现方式;三是噪声处理,Retinex算法可能放大噪声较大的图像中的噪声,因此实际应用中可能需要结合去噪方法,如中值滤波或非局部均值滤波。通过深入理解和应用Retinex算法,不
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值