【力扣题解 Day 15】1432. 改变一个整数能得到的最大差值

【力扣题解 Day 15】1432. 改变一个整数能得到的最大差值

问题

Problem: 1432. 改变一个整数能得到的最大差值

思路

贪心

解题过程

通过数学分析可以判断出最大和最小值的替换策略,因此贪心地选择这个最佳策略即可获得结果
最大值:将整数从左到右遍历,把第一个不为 9 的数字替换成 9 即为最大值
最小值:对整数的最高位进行特殊判断(最高位不可能为 0),若最高位不为 1,那么就选择将最高位替换为 1 即可得到最小值,否则就开始向右遍历,遇到第一个不为 0 的数字替换为 0 即为最小值,这里还有一种特殊情况,即这个不为 0 的数字跟最高位数字相等,此时需要跳过这个数字继续遍历(continue

复杂度

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)

Code

class Solution:
    def maxDiff(self, num: int) -> int:
        s = str(num)
        t = s
        n = len(s)
        max_replace = 0
        min_replace = 0

        while max_replace < n and s[max_replace] == '9':
            max_replace += 1
        
        if s[min_replace] == '1':
            min_replace += 1
        while min_replace > 0 and min_replace < n and (s[min_replace] == '0' or s[min_replace] == s[0]):
            min_replace += 1

        if max_replace < n:
            s = s.replace(s[max_replace], '9')
        if min_replace < n and t[min_replace] == t[0]:
            t = t.replace(t[min_replace], '1')
        elif min_replace < n:
            t = t.replace(t[min_replace], '0')

        return int(s) - int(t)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值