高斯过程回归(Gaussian Process Regression, GPR)的理解1——权重空间角度
核心预备知识能够区分频率学派和贝叶斯学派求解模型时的思想区别。熟悉最基础的概率运算公式(本科内容)。熟悉线性代数以及微积分的运算(本科内容)。熟悉贝叶斯公式,并能理解后验以及先验所代表的物理含义。了解核方法,核技巧的定义。熟悉多维高斯分布的运算规则。1.基于贝叶斯线性回归推导GPR1 贝叶斯线性回归的基本模型在理解GPR之前,我们先了解一个算法,叫做贝叶斯线性回归(Bayesian Linear Regression, BLR)。本质上,GPR就是将BLR进行了非线性化处理后得到的。因



