pandas基础使用
import pandas as pd
#打开csv 文件 sep 分隔符一般为,
# info_csv = pd.read_csv("info.csv",sep=",",encoding="gbk")
#存储csv文件
# info_csv.to_csv("123.csv",sep=",")
#读取excel
# date_excel=pd.read_excel("abc.excel")
#存储excel
# date_excel.to_excel("bca.excel")
#==============pandas常用基本操作==================================
test=pd.read_excel("abc.excel")
#常用属性 :
"""
(1)test的元素 : values test.values
(2)索引:index test.index
(3)列名:columns test.columns
(4)元素类型:dtypes test.dtypes
(5)元素个数:size test.size
(6)维度:ndim test.ndim
(7)结构:shape test.shape
(8)表转置: T test.T 行转列,列转行
"""
#获取某一列 假设表中有 abc 这一列
#test["abc"]
#获取前五个
# test["abc"][:5]
# 第二种方法
#获取倒数5个 tail(获取个数) 不加默认为5
# test["abc"].tail()
#获取前面5个 head(获取个数) 不加默认为5
# test["abc"].head()
#loc/iloc函数
# loc:针对索引名称的切片 loc[行索引名称或者条件 , 列索引名称]
# iloc:针对索引的切片(传入行索引和列索引所在的位置) iloc[行索引位置,列索引位置]
#获取某一列 假设表中有 abc 这一列
# test.loc[:,"abc"]
#获取某一列的前20个 假设表中有 abc 这一列
# test.loc[:20,"abc"]
#获取某一列 假设表中有 abc 这一列 那么索引为0
# print("使用iloc切片,取abc列:\n",test.iloc[:,0])
#更改数值
# test["abc"]=100
#增加 cdw 这一列
# test["cdw"]=20
#删除
#删除"abc","cdw" 两列 inplace默认为False 表示是否对原表进行修改
#删除两列 行变化 所以axis=1
# test.drop(labels=["abc","cdw"],axis=1,inplace=True)
#删除一行 第一行索引为0 纵变化 所以axis=0
# details.drop(labels=[0],axis=0,inplace=True)
#===============分析数据==============
import numpy as np
# 中位数 np.dedian(test["abc"]) 可以求出abc 这一列的中位数
# 极差 np.ptp(test["abc"]) 可以求出abc 这一列的极差
# 平均值 np.mean()
# 标准差 np.std()
#方差 np.var()
#describe方法求解
# print(test["abc"].describe())
#出来的count 是非空的数目
#频数统计 value_counts
# print(test["abc"].value_counts())
#转类型 astype("category") 数值型转类别型 类别型转数值型
# test["abc"]=test["abc"].astype("category")
#===============时间处理=============
#假设 有个列 time 是存储时间的
#转换时间 pd.to_datetime()
# test["time"]=pd.to_datetime(test["time"])
# 打印时间里的年份
# year1=[i.year for i in test["time"]]
#月份 month 日day 周日 weekday_name
#小时hour 分钟minute 季节quarter
这篇博客介绍了pandas的基础使用,包括数据加载、数据操作和基本统计分析。
130

被折叠的 条评论
为什么被折叠?



