pandas基础使用

这篇博客介绍了pandas的基础使用,包括数据加载、数据操作和基本统计分析。
摘要由CSDN通过智能技术生成

pandas基础使用

import pandas as pd

#打开csv 文件 sep 分隔符一般为,
# info_csv = pd.read_csv("info.csv",sep=",",encoding="gbk")
#存储csv文件
# info_csv.to_csv("123.csv",sep=",")

#读取excel
# date_excel=pd.read_excel("abc.excel")
#存储excel
# date_excel.to_excel("bca.excel")

#==============pandas常用基本操作==================================
test=pd.read_excel("abc.excel")
#常用属性 :
"""
(1)test的元素 : values  test.values
(2)索引:index    test.index
(3)列名:columns   test.columns
(4)元素类型:dtypes    test.dtypes
(5)元素个数:size       test.size
(6)维度:ndim        test.ndim
(7)结构:shape       test.shape
(8)表转置: T        test.T  行转列,列转行
"""

#获取某一列   假设表中有 abc 这一列
#test["abc"]
#获取前五个
# test["abc"][:5]

# 第二种方法
#获取倒数5个  tail(获取个数)  不加默认为5
# test["abc"].tail()
#获取前面5个  head(获取个数)  不加默认为5
# test["abc"].head()

#loc/iloc函数
# loc:针对索引名称的切片 loc[行索引名称或者条件 , 列索引名称]
# iloc:针对索引的切片(传入行索引和列索引所在的位置) iloc[行索引位置,列索引位置]

#获取某一列   假设表中有 abc 这一列
# test.loc[:,"abc"]
#获取某一列的前20个   假设表中有 abc 这一列
# test.loc[:20,"abc"]

#获取某一列   假设表中有 abc 这一列 那么索引为0
# print("使用iloc切片,取abc列:\n",test.iloc[:,0])


#更改数值
# test["abc"]=100

#增加 cdw 这一列
# test["cdw"]=20

#删除

#删除"abc","cdw" 两列  inplace默认为False 表示是否对原表进行修改
#删除两列  行变化 所以axis=1
# test.drop(labels=["abc","cdw"],axis=1,inplace=True)

#删除一行 第一行索引为0  纵变化 所以axis=0
# details.drop(labels=[0],axis=0,inplace=True)

#===============分析数据==============
import numpy as np

# 中位数  np.dedian(test["abc"])  可以求出abc  这一列的中位数
# 极差 np.ptp(test["abc"])   可以求出abc  这一列的极差
# 平均值 np.mean()
# 标准差 np.std()
#方差 np.var()


#describe方法求解
# print(test["abc"].describe())
#出来的count 是非空的数目

#频数统计 value_counts
# print(test["abc"].value_counts())

#转类型 astype("category") 数值型转类别型   类别型转数值型
# test["abc"]=test["abc"].astype("category")


#===============时间处理=============
#假设 有个列 time  是存储时间的
#转换时间 pd.to_datetime()
# test["time"]=pd.to_datetime(test["time"])

# 打印时间里的年份
# year1=[i.year for i in test["time"]]
#月份 month  日day  周日 weekday_name
#小时hour  分钟minute 季节quarter




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值