波士顿房价预测
波士顿房价预测(一)
比赛网址:https://www.kaggle.com/c/machine-learning-on-thursday/overview
比赛要求
1.做线性回归,或使用现成的线性回归函数,方法尝试使用Gradient Descent,SGD以及ADAM。
2.比较不同的学习率的结果。例如损失函数曲线图
3.比较有无加上regularization的结果。
4.比较有无否使用feature scale的结果。
熟悉数据
训练数据:
train_data=pd.read_csv('train_dataset.csv',index_col=None)
train_data.head()

查看训练数据是否有空值
train_data.isnull().sum()

测试数据展示:
test_data=pd.read_csv('test_dataset.csv')
test_data.head()

本文介绍了参加Kaggle上的波士顿房价预测比赛,详细阐述了比赛要求,包括使用线性回归算法,探讨不同学习率、正则化和特征缩放的影响。通过sklearn库进行了数据预处理和模型训练,最终得出初步预测结果。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=113730258&d=1&t=3&u=f614adeaada74d9fa42ae1eb5b650ab0)
1万+

被折叠的 条评论
为什么被折叠?



