机器学习
追本溯源test
这个作者很懒,什么都没留下…
展开
-
波士顿房价预测(四:利用torch手写线性回归代码,含有L1,L2正则)
波士顿房价预测(四:利用torch手写线性回归代码,含有L1,L2正则)导库from IPython import displayfrom matplotlib import pyplot as pltfrom mxnet import autograd, ndimport randomimport pandas as pdimport numpy as np读取数据:train_data=pd.read_csv('train_dataset.csv')test_data=pd.rea原创 2021-02-06 21:00:18 · 720 阅读 · 0 评论 -
波士顿房价预测(三)
波士顿房价预测(三)在(二)的基础上,进行特征选择:导库:import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns读取文件:train_data=pd.read_csv('train_dataset.csv')test_data=pd.read_csv('test_dataset.csv')train_price=train_data['PRICE']del tr原创 2021-02-06 20:43:39 · 340 阅读 · 0 评论 -
波士顿房价预测(二)
波士顿房价预测(二)在(一)的基础上进行了数据的异常处理库:import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as sns读取数据:train_data=pd.read_csv('train_dataset.csv')test_data=pd.read_csv('test_dataset.csv')train_price=train_data['PRICE']del t原创 2021-02-06 20:36:17 · 264 阅读 · 0 评论 -
波士顿房价预测(一)
波士顿房价预测波士顿房价预测(一)比赛网址:https://www.kaggle.com/c/machine-learning-on-thursday/overview比赛要求1.做线性回归,或使用现成的线性回归函数,方法尝试使用Gradient Descent,SGD以及ADAM。2.比较不同的学习率的结果。例如损失函数曲线图3.比较有无加上regularization的结果。4.比较有无否使用feature scale的结果。熟悉数据训练数据:train_data=pd.read_c原创 2021-02-06 20:26:49 · 928 阅读 · 0 评论
分享