SAM2 分割一切 环境配置及运行测试的主要问题

1.环境配置

按照REDEME的流程,已安装python3.11,pytorch2.4.0+cu124

cd到segment-anything-2-main文件夹,执行:

pip install -e .

 发生以下错误:

解决办法:在 setup.py的第21行,加入encoding='utf-8'

with open("README.md", "r", encoding='utf-8') as f:
    LONG_DESCRIPTION = f.read()

再次执行pip install -e .   即可成功安装。

 

 2.模型下载

 打开SAM2的GitHub官方地址,把下面4个模型全部下载,移动到segment-anything-2-main/cheakpoints目录下。

 

 

3.代码测试 

 安装matplotlib、opencv-python、jupyter等包,哪个包爆红安装哪个。运行image_predictor_example.ipynb

 

 全部运行时报错:1Torch was not compiled with flash attention.

 解决方案:在sam2/modeling/sam/transformer.py中禁用flash attention即可。在24行添加以下代码:

 

 问题解决,代码跑通。

 

### 使用LoRA微调SAM模型实现实例分割 #### 1. 准备工作 为了使用低秩适应(LoRA)技术对Segment Anything Model (SAM) 进行微调,首先要准备好必要的环境和数据集。确保安装了支持LoRA的库以及目标检测和分割任务所需的工具包。 对于Python开发环境而言,可以创建一个新的虚拟环境并激活它: ```bash conda create -n sam_lora python=3.8 conda activate sam_lora ``` 接着按照官方文档指导安装PyTorch和其他依赖项,并克隆包含LoRA实现的GitHub仓库[^2]。 #### 2. 数据准备 收集用于训练的数据集非常重要。这些数据应该包括带有标注框或掩码的目标对象图片。考虑到效率问题,建议先从小规模高质量的数据集开始实验。如果可能的话,还可以考虑合成额外的样本以增强泛化能力。 加载自定义数据集可以通过继承`torch.utils.data.Dataset`类来自定义读取逻辑,或者直接采用现成的支持COCO格式等标准接口的数据加载器。 #### 3. 构建LoRA适配层 在原有SAM架构基础上引入少量可学习参数作为调节因子,即所谓的“瓶颈”结构——这正是LoRA的核心思想所在。具体来说就是在某些选定的关键位置插入线性变换矩阵A与B,使得最终输出变为\(y=(W+AB)x\)的形式,其中\(W\)代表原始权重矩阵而\(A,B\)则是新增加的小型矩阵。 针对SAM中的视觉Transformer部分,可以选择特定层次之后加入这样的调整单元;而对于解码端,则可以在预测头部之前实施类似的改造措施。值得注意的是,由于SAM本身已经具备强大的表征能力,因此只需选取少数几处关键节点即可达到理想效果而不必全面铺开。 #### 4. 微调过程配置 设置好上述组件后就可以着手编写具体的优化流程脚本了。这里推荐遵循迁移学习的一般原则:初始阶段保持大部分网络权值不变仅更新那些专门为当前任务定制的新部件;随着迭代次数增加再逐步放开更多自由度直至完成整个系统的联合精炼。 实践中往往还需要仔细调试超参组合比如批次大小(batch size),学习率(learning rate)等等因素来获得最佳性能表现。此外,鉴于资源消耗考量,不妨尝试启用混合精度(Mixed Precision Training, MPT)机制进一步加速收敛速度同时降低显存占用量。 #### 5. 测试评估 经过充分训练后的模型应当能够在验证集上取得令人满意的指标得分。此时便可以用测试集合对其进行最后检验并将结果可视化出来便于直观感受改进之处。借助开源社区分享的各种实用工具如TensorBoardX可以帮助记录下每次运行期间产生的各类统计信息以便后续分析对比之用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值