UA MATH564 概率论II 连续型随机变量1

随机变量的变换

一元随机变量的变换

假设 X X X为分布函数为 F X F_X FX的一元随机变量, X ∈ D X X \in \mathbb{D}_X XDX,随机变量 Y = g ( X ) Y=g(X) Y=g(X) g g g为有界连续函数,则
F Y ( y ) = P ( Y ≤ y ) = P ( g ( X ) ≤ y ) = P ( X ∈ g − 1 ( Y ≤ y ) ) F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in g^{-1}(Y \le y)) FY(y)=P(Yy)=P(g(X)y)=P(Xg1(Yy))
g g g不是单调函数时需要按这个一般性的方法计算。假设 g g g为单调递增的函数,定义 h = g − 1 h=g^{-1} h=g1
F Y ( y ) = P ( X ≤ h ( y ) ) = F X ( h ( y ) ) f Y ( y ) = f X ( h ( y ) ) h ′ ( y ) F_Y(y) = P(X \le h(y)) = F_X(h(y)) \\ f_Y(y) = f_X(h(y))h^{'}(y) FY(y)=P(Xh(y))=FX(h(y))fY(y)=fX(h(y))h(y)
假设 g g g为单调递减的函数,则
F Y ( y ) = P ( X > h ( y ) ) = 1 − F X ( h ( y ) ) f Y ( y ) = − f X ( h ( y ) ) h ′ ( y ) F_Y(y) = P(X > h(y)) = 1- F_X(h(y)) \\ f_Y(y) = -f_X(h(y))h^{'}(y) FY(y)=P(X>h(y))=1FX(h(y))fY(y)=fX(h(y))h(y)
综合这两个结果,当 g g g单调时
f Y ( y ) = f X ( h ( y ) ) ∣ h ′ ( y ) ∣ f_Y(y) = f_X(h(y))|h^{'}(y)| fY(y)=fX(h(y))h(y)

多元随机变量的变换

假设 X X X为分布函数为 F X F_X FX的多元随机变量, X ∈ D X X \in \mathbb{D}_X XDX,随机变量 Y = g ( X ) Y=g(X) Y=g(X) Y ∈ D Y Y \in \mathbb{D}_Y YDY g g g为有界连续函数,且Jacobi行列式 J g ≠ 0 Jg \ne 0 Jg=0,定义 h = g − 1 h=g^{-1} h=g1,根据 F X F_X FX的归一化条件
∫ D X f X ( x ) d x = 1 \int_{\mathbb{D}_X} f_X(x) dx = 1 DXfX(x)dx=1
根据积分换元公式,等式左边等于
∫ D Y f X ( h ( y ) ) ∣ d x d y ∣ d y = ∫ D Y f X ( h ( y ) ) ∣ J h ( y ) ∣ d y = 1 = ∫ D Y f Y ( y ) d y \int_{\mathbb{D}_Y} f_X(h(y)) |\frac{dx}{dy}|dy = \int_{\mathbb{D}_Y} f_X(h(y)) |Jh(y)|dy =1= \int_{\mathbb{D}_Y} f_Y(y) dy DYfX(h(y))dydxdy=DYfX(h(y))Jh(y)dy=1=DYfY(y)dy
因此
f Y ( y ) = f X ( h ( y ) ) ∣ J h ( y ) ∣ f_Y(y) = f_X(h(y)) |Jh(y)| fY(y)=fX(h(y))Jh(y)

均匀分布与Pareto分布

离散的均匀分布

古典概型中,基本事件数量有限,且发生的可能性是均等的。这个假设可以用离散的均匀分布来描述。假设样本空间为 Ω = { w 1 , w 2 , . . . , w N } \Omega=\{w_1,w_2,...,w_N\} Ω={w1,w2,...,wN},随机变量 X : w j → j X:w_j \to j X:wjj的取值为 j ∈ { 1 , 2 , . . . , N } j \in \{1,2,...,N\} j{1,2,...,N},则X的分布列(mass function)为
f X ( j ) = P ( X = j ) = 1 N f_X(j)=P(X=j)=\frac{1}{N} fX(j)=P(X=j)=N1
X的概率生成函数(Probability Generating Function,PGF)为
ρ X ( z ) = E ( z X ) = ∑ j = 1 N z j f X ( j ) = 1 N ∑ j = 1 N z j = z − z N ( 1 − z ) N = 1 N ∑ i = k N − 1 z i \rho_X(z) = E(z^X)=\sum_{j=1}^{N} z^j f_X(j) = \frac{1}{N}\sum_{j=1}^{N} z^j =\frac{z-z^N}{(1-z)N} = \frac{1}{N} \sum_{i=k}^{N-1} z^i ρX(z)=E(zX)=j=1NzjfX(j)=N1j=1Nzj=(1z)NzzN=N1i=kN1zi
X的均值和方差为
E X = 1 N ∑ j = 1 N j = N + 1 2 V a r X = 1 N ∑ j = 1 N j 2 − ( N + 1 2 ) 2 = ( N − 1 ) ( N + 1 ) 12 EX = \frac{1}{N}\sum_{j=1}^{N} j = \frac{N+1}{2} \\ VarX=\frac{1}{N}\sum_{j=1}^{N} j^2-(\frac{N+1}{2})^2 = \frac{(N-1)(N+1)}{12} EX=N1j=1Nj=2N+1VarX=N1j=1Nj2(2N+1)2=12(N1)(N+1)
根据PGF的性质
E ( X ) k = 1 N ∑ j = 1 N ( j ) k = ρ X ( k ) ( 1 ) E(X)_k = \frac{1}{N}\sum_{j=1}^{N} (j)_k = \rho_X^{(k)}(1) E(X)k=N1j=1N(j)k=ρX(k)(1)
其中记号 ( j ) k (j)_k (j)k代表排列数 A j k A_j^k Ajk。对数列 a n a_n an引入(向前)差分运算
Δ + a n = a n + 1 − a n \Delta_{+} a_n = a_{n+1} - a_n Δ+an=an+1an
则(向前)差分的前N项和为
∑ n = 1 N Δ + a n = ∑ n = 1 N ( a n + 1 − a n ) = a N + 1 − a 1 \sum_{n=1}^{N} \Delta_{+} a_n = \sum_{n=1}^{N} (a_{n+1} - a_n) = a_{N+1} - a_1 n=1NΔ+an=n=1N(an+1an)=aN+1a1
考虑记号 ( i ) k (i)_k (i)k关于 i i i的(向前)差分
Δ + ( i ) k = ( i + 1 ) k − ( i ) k = ( i + 1 ) ( i ) ( k − 1 ) − ( i ) ( k − 1 ) ( i − k + 1 ) = k ( i ) k − 1 \Delta_{+} (i)_k = (i+1)_k - (i)_k = (i+1)(i)_{(k-1)} - (i)_{(k-1)} (i-k+1) = k(i)_{k-1} Δ+(i)k=(i+1)k(i)k=(i+1)(i)(k1)(i)(k1)(ik+1)=k(i)k1
现在对 ( j ) k (j)_k (j)k的前N项和进一步化简
∑ j = 1 N ( j ) k = k ! + ∑ j = k + 1 N 1 k + 1 Δ + ( j ) ( k + 1 ) = k ! + ( N + 1 ) k + 1 − ( k + 1 ) ! k + 1 = ( N + 1 ) k + 1 k + 1 \sum_{j=1}^{N} (j)_k = k!+\sum_{j=k+1}^{N} \frac{1}{k+1} \Delta_{+} (j)_{(k+1)} = k! + \frac{(N+1)_{k+1} - (k+1)!}{k+1} = \frac{(N+1)_{k+1}}{k+1} j=1N(j)k=k!+j=k+1Nk+11Δ+(j)(k+1)=k!+k+1(N+1)k+1(k+1)!=k+1(N+1)k+1
所以
E ( X ) k = ρ X ( k ) ( 1 ) = ( N + 1 ) k + 1 N ( k + 1 ) E(X)_k = \rho_X^{(k)}(1) = \frac{(N+1)_{k+1}}{N(k+1)} E(X)k=ρX(k)(1)=N(k+1)(N+1)k+1

连续的均匀分布

连续的均匀分布脱胎于几何概型的基本假设。假设样本空间 Ω ⊂ R n \Omega \subset R^n ΩRn, ∣ Ω ∣ |\Omega| Ω Ω \Omega Ω的Lebesgue测度,则 ∀ x ∈ Ω \forall x \in \Omega xΩ,点 x x x被取到的概率相同,从而密度(density)函数为
f X ( x ) = I ( x ∈ Ω ) ∣ Ω ∣ f_X(x) = \frac{I(x \in \Omega)}{|\Omega|} fX(x)=ΩI(xΩ)
假设 Ω ⊂ R \Omega \subset R ΩR,则 Ω \Omega Ω可以由一列几乎不相交的闭区间表示
Ω = ⋃ j = 1 J [ a j , b j ] ∣ Ω ∣ = ∑ j = 1 J ( b j − a j ) \Omega = \bigcup_{j=1}^{J} [a_j,b_j] \\ |\Omega| = \sum_{j=1}^{J} (b_j-a_j) Ω=j=1J[aj,bj]Ω=j=1J(bjaj)
假设 Ω ⊂ R 2 \Omega \subset R^2 ΩR2,则 Ω \Omega Ω可以由一列几乎不相交的闭矩形表示
Ω = ⋃ j = 1 J R j ∣ Ω ∣ = ∑ j = 1 J ∣ R j ∣ \Omega = \bigcup_{j=1}^{J} R_j \\ |\Omega| = \sum_{j=1}^{J} |R_j| Ω=j=1JRjΩ=j=1JRj
例如,一元连续均匀分布 U [ a , b ] U[a,b] U[a,b]的密度为
f X ( x ) = 1 b − a , x ∈ [ a , b ] f_X(x) = \frac{1}{b-a},x \in [a,b] fX(x)=ba1,x[a,b]
矩生成函数(Moment Generating Function,MGF)为
M X ( t ) = E ( e t X ) = ∫ a b e t x b − a d x = ( e b − e a ) e t ( b − a ) t M_X(t) = E(e^{tX}) = \int_{a}^{b} \frac{e^{tx}}{b-a} dx = \frac{(e^{b}-e^{a})e^t}{(b-a)t} \\ MX(t)=E(etX)=abbaetxdx=(ba)t(ebea)et

Zeta分布

假设X为离散均匀分布, Y = g ( X ) = X s Y=g(X)=X^s Y=g(X)=Xs,则
f Y ( y ) ∝ y − s f_Y(y) \propto y^{-s} fY(y)ys
不妨假设 f Y ( y ) = C y − s f_Y(y)=Cy^{-s} fY(y)=Cys
∑ y = 1 ∞ C y − s = C ∑ y = 1 ∞ y − s = C ζ ( s ) = 1 C = 1 ζ ( s ) \sum_{y=1}^{\infty} Cy^{-s}= C \sum_{y=1}^{\infty} y^{-s} = C \zeta(s)=1 \\ C = \frac{1}{\zeta(s)} y=1Cys=Cy=1ys=Cζ(s)=1C=ζ(s)1
其中 ζ ( s ) \zeta(s) ζ(s)为Riemann-zeta函数。称随机变量Y服从zeta分布,
f Y ( y ) = y − s ζ ( s ) f_Y(y) = \frac{y^{-s}}{\zeta(s)} fY(y)=ζ(s)ys

Pareto分布

假设 X ∼ U [ 0 , 1 ] X \sim U[0,1] XU[0,1] Y = g ( X ) = X p Y=g(X)=X^p Y=g(X)=Xp,则
f Y ( y ) = f X ( g − 1 ( y ) ) ∣ h ′ ( y ) ∣ = f X ( y − p ) p y − ( p + 1 ) = p y − ( p + 1 ) f_Y(y) = f_X(g^{-1}(y))|h^{'}(y)|=f_X(y^{-p}) py^{-(p+1)} = py^{-(p+1)} fY(y)=fX(g1(y))h(y)=fX(yp)py(p+1)=py(p+1)
称随机变量Y服从Pareto分布。

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个不愿透露姓名的孩子

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值