随机变量的变换
一元随机变量的变换
假设
X
X
X为分布函数为
F
X
F_X
FX的一元随机变量,
X
∈
D
X
X \in \mathbb{D}_X
X∈DX,随机变量
Y
=
g
(
X
)
Y=g(X)
Y=g(X),
g
g
g为有界连续函数,则
F
Y
(
y
)
=
P
(
Y
≤
y
)
=
P
(
g
(
X
)
≤
y
)
=
P
(
X
∈
g
−
1
(
Y
≤
y
)
)
F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(X \in g^{-1}(Y \le y))
FY(y)=P(Y≤y)=P(g(X)≤y)=P(X∈g−1(Y≤y))
当
g
g
g不是单调函数时需要按这个一般性的方法计算。假设
g
g
g为单调递增的函数,定义
h
=
g
−
1
h=g^{-1}
h=g−1,
F
Y
(
y
)
=
P
(
X
≤
h
(
y
)
)
=
F
X
(
h
(
y
)
)
f
Y
(
y
)
=
f
X
(
h
(
y
)
)
h
′
(
y
)
F_Y(y) = P(X \le h(y)) = F_X(h(y)) \\ f_Y(y) = f_X(h(y))h^{'}(y)
FY(y)=P(X≤h(y))=FX(h(y))fY(y)=fX(h(y))h′(y)
假设
g
g
g为单调递减的函数,则
F
Y
(
y
)
=
P
(
X
>
h
(
y
)
)
=
1
−
F
X
(
h
(
y
)
)
f
Y
(
y
)
=
−
f
X
(
h
(
y
)
)
h
′
(
y
)
F_Y(y) = P(X > h(y)) = 1- F_X(h(y)) \\ f_Y(y) = -f_X(h(y))h^{'}(y)
FY(y)=P(X>h(y))=1−FX(h(y))fY(y)=−fX(h(y))h′(y)
综合这两个结果,当
g
g
g单调时
f
Y
(
y
)
=
f
X
(
h
(
y
)
)
∣
h
′
(
y
)
∣
f_Y(y) = f_X(h(y))|h^{'}(y)|
fY(y)=fX(h(y))∣h′(y)∣
多元随机变量的变换
假设
X
X
X为分布函数为
F
X
F_X
FX的多元随机变量,
X
∈
D
X
X \in \mathbb{D}_X
X∈DX,随机变量
Y
=
g
(
X
)
Y=g(X)
Y=g(X),
Y
∈
D
Y
Y \in \mathbb{D}_Y
Y∈DY,
g
g
g为有界连续函数,且Jacobi行列式
J
g
≠
0
Jg \ne 0
Jg=0,定义
h
=
g
−
1
h=g^{-1}
h=g−1,根据
F
X
F_X
FX的归一化条件
∫
D
X
f
X
(
x
)
d
x
=
1
\int_{\mathbb{D}_X} f_X(x) dx = 1
∫DXfX(x)dx=1
根据积分换元公式,等式左边等于
∫
D
Y
f
X
(
h
(
y
)
)
∣
d
x
d
y
∣
d
y
=
∫
D
Y
f
X
(
h
(
y
)
)
∣
J
h
(
y
)
∣
d
y
=
1
=
∫
D
Y
f
Y
(
y
)
d
y
\int_{\mathbb{D}_Y} f_X(h(y)) |\frac{dx}{dy}|dy = \int_{\mathbb{D}_Y} f_X(h(y)) |Jh(y)|dy =1= \int_{\mathbb{D}_Y} f_Y(y) dy
∫DYfX(h(y))∣dydx∣dy=∫DYfX(h(y))∣Jh(y)∣dy=1=∫DYfY(y)dy
因此
f
Y
(
y
)
=
f
X
(
h
(
y
)
)
∣
J
h
(
y
)
∣
f_Y(y) = f_X(h(y)) |Jh(y)|
fY(y)=fX(h(y))∣Jh(y)∣
均匀分布与Pareto分布
离散的均匀分布
古典概型中,基本事件数量有限,且发生的可能性是均等的。这个假设可以用离散的均匀分布来描述。假设样本空间为
Ω
=
{
w
1
,
w
2
,
.
.
.
,
w
N
}
\Omega=\{w_1,w_2,...,w_N\}
Ω={w1,w2,...,wN},随机变量
X
:
w
j
→
j
X:w_j \to j
X:wj→j的取值为
j
∈
{
1
,
2
,
.
.
.
,
N
}
j \in \{1,2,...,N\}
j∈{1,2,...,N},则X的分布列(mass function)为
f
X
(
j
)
=
P
(
X
=
j
)
=
1
N
f_X(j)=P(X=j)=\frac{1}{N}
fX(j)=P(X=j)=N1
X的概率生成函数(Probability Generating Function,PGF)为
ρ
X
(
z
)
=
E
(
z
X
)
=
∑
j
=
1
N
z
j
f
X
(
j
)
=
1
N
∑
j
=
1
N
z
j
=
z
−
z
N
(
1
−
z
)
N
=
1
N
∑
i
=
k
N
−
1
z
i
\rho_X(z) = E(z^X)=\sum_{j=1}^{N} z^j f_X(j) = \frac{1}{N}\sum_{j=1}^{N} z^j =\frac{z-z^N}{(1-z)N} = \frac{1}{N} \sum_{i=k}^{N-1} z^i
ρX(z)=E(zX)=j=1∑NzjfX(j)=N1j=1∑Nzj=(1−z)Nz−zN=N1i=k∑N−1zi
X的均值和方差为
E
X
=
1
N
∑
j
=
1
N
j
=
N
+
1
2
V
a
r
X
=
1
N
∑
j
=
1
N
j
2
−
(
N
+
1
2
)
2
=
(
N
−
1
)
(
N
+
1
)
12
EX = \frac{1}{N}\sum_{j=1}^{N} j = \frac{N+1}{2} \\ VarX=\frac{1}{N}\sum_{j=1}^{N} j^2-(\frac{N+1}{2})^2 = \frac{(N-1)(N+1)}{12}
EX=N1j=1∑Nj=2N+1VarX=N1j=1∑Nj2−(2N+1)2=12(N−1)(N+1)
根据PGF的性质
E
(
X
)
k
=
1
N
∑
j
=
1
N
(
j
)
k
=
ρ
X
(
k
)
(
1
)
E(X)_k = \frac{1}{N}\sum_{j=1}^{N} (j)_k = \rho_X^{(k)}(1)
E(X)k=N1j=1∑N(j)k=ρX(k)(1)
其中记号
(
j
)
k
(j)_k
(j)k代表排列数
A
j
k
A_j^k
Ajk。对数列
a
n
a_n
an引入(向前)差分运算
Δ
+
a
n
=
a
n
+
1
−
a
n
\Delta_{+} a_n = a_{n+1} - a_n
Δ+an=an+1−an
则(向前)差分的前N项和为
∑
n
=
1
N
Δ
+
a
n
=
∑
n
=
1
N
(
a
n
+
1
−
a
n
)
=
a
N
+
1
−
a
1
\sum_{n=1}^{N} \Delta_{+} a_n = \sum_{n=1}^{N} (a_{n+1} - a_n) = a_{N+1} - a_1
n=1∑NΔ+an=n=1∑N(an+1−an)=aN+1−a1
考虑记号
(
i
)
k
(i)_k
(i)k关于
i
i
i的(向前)差分
Δ
+
(
i
)
k
=
(
i
+
1
)
k
−
(
i
)
k
=
(
i
+
1
)
(
i
)
(
k
−
1
)
−
(
i
)
(
k
−
1
)
(
i
−
k
+
1
)
=
k
(
i
)
k
−
1
\Delta_{+} (i)_k = (i+1)_k - (i)_k = (i+1)(i)_{(k-1)} - (i)_{(k-1)} (i-k+1) = k(i)_{k-1}
Δ+(i)k=(i+1)k−(i)k=(i+1)(i)(k−1)−(i)(k−1)(i−k+1)=k(i)k−1
现在对
(
j
)
k
(j)_k
(j)k的前N项和进一步化简
∑
j
=
1
N
(
j
)
k
=
k
!
+
∑
j
=
k
+
1
N
1
k
+
1
Δ
+
(
j
)
(
k
+
1
)
=
k
!
+
(
N
+
1
)
k
+
1
−
(
k
+
1
)
!
k
+
1
=
(
N
+
1
)
k
+
1
k
+
1
\sum_{j=1}^{N} (j)_k = k!+\sum_{j=k+1}^{N} \frac{1}{k+1} \Delta_{+} (j)_{(k+1)} = k! + \frac{(N+1)_{k+1} - (k+1)!}{k+1} = \frac{(N+1)_{k+1}}{k+1}
j=1∑N(j)k=k!+j=k+1∑Nk+11Δ+(j)(k+1)=k!+k+1(N+1)k+1−(k+1)!=k+1(N+1)k+1
所以
E
(
X
)
k
=
ρ
X
(
k
)
(
1
)
=
(
N
+
1
)
k
+
1
N
(
k
+
1
)
E(X)_k = \rho_X^{(k)}(1) = \frac{(N+1)_{k+1}}{N(k+1)}
E(X)k=ρX(k)(1)=N(k+1)(N+1)k+1
连续的均匀分布
连续的均匀分布脱胎于几何概型的基本假设。假设样本空间
Ω
⊂
R
n
\Omega \subset R^n
Ω⊂Rn,
∣
Ω
∣
|\Omega|
∣Ω∣是
Ω
\Omega
Ω的Lebesgue测度,则
∀
x
∈
Ω
\forall x \in \Omega
∀x∈Ω,点
x
x
x被取到的概率相同,从而密度(density)函数为
f
X
(
x
)
=
I
(
x
∈
Ω
)
∣
Ω
∣
f_X(x) = \frac{I(x \in \Omega)}{|\Omega|}
fX(x)=∣Ω∣I(x∈Ω)
假设
Ω
⊂
R
\Omega \subset R
Ω⊂R,则
Ω
\Omega
Ω可以由一列几乎不相交的闭区间表示
Ω
=
⋃
j
=
1
J
[
a
j
,
b
j
]
∣
Ω
∣
=
∑
j
=
1
J
(
b
j
−
a
j
)
\Omega = \bigcup_{j=1}^{J} [a_j,b_j] \\ |\Omega| = \sum_{j=1}^{J} (b_j-a_j)
Ω=j=1⋃J[aj,bj]∣Ω∣=j=1∑J(bj−aj)
假设
Ω
⊂
R
2
\Omega \subset R^2
Ω⊂R2,则
Ω
\Omega
Ω可以由一列几乎不相交的闭矩形表示
Ω
=
⋃
j
=
1
J
R
j
∣
Ω
∣
=
∑
j
=
1
J
∣
R
j
∣
\Omega = \bigcup_{j=1}^{J} R_j \\ |\Omega| = \sum_{j=1}^{J} |R_j|
Ω=j=1⋃JRj∣Ω∣=j=1∑J∣Rj∣
例如,一元连续均匀分布
U
[
a
,
b
]
U[a,b]
U[a,b]的密度为
f
X
(
x
)
=
1
b
−
a
,
x
∈
[
a
,
b
]
f_X(x) = \frac{1}{b-a},x \in [a,b]
fX(x)=b−a1,x∈[a,b]
矩生成函数(Moment Generating Function,MGF)为
M
X
(
t
)
=
E
(
e
t
X
)
=
∫
a
b
e
t
x
b
−
a
d
x
=
(
e
b
−
e
a
)
e
t
(
b
−
a
)
t
M_X(t) = E(e^{tX}) = \int_{a}^{b} \frac{e^{tx}}{b-a} dx = \frac{(e^{b}-e^{a})e^t}{(b-a)t} \\
MX(t)=E(etX)=∫abb−aetxdx=(b−a)t(eb−ea)et
Zeta分布
假设X为离散均匀分布,
Y
=
g
(
X
)
=
X
s
Y=g(X)=X^s
Y=g(X)=Xs,则
f
Y
(
y
)
∝
y
−
s
f_Y(y) \propto y^{-s}
fY(y)∝y−s
不妨假设
f
Y
(
y
)
=
C
y
−
s
f_Y(y)=Cy^{-s}
fY(y)=Cy−s,
∑
y
=
1
∞
C
y
−
s
=
C
∑
y
=
1
∞
y
−
s
=
C
ζ
(
s
)
=
1
C
=
1
ζ
(
s
)
\sum_{y=1}^{\infty} Cy^{-s}= C \sum_{y=1}^{\infty} y^{-s} = C \zeta(s)=1 \\ C = \frac{1}{\zeta(s)}
y=1∑∞Cy−s=Cy=1∑∞y−s=Cζ(s)=1C=ζ(s)1
其中
ζ
(
s
)
\zeta(s)
ζ(s)为Riemann-zeta函数。称随机变量Y服从zeta分布,
f
Y
(
y
)
=
y
−
s
ζ
(
s
)
f_Y(y) = \frac{y^{-s}}{\zeta(s)}
fY(y)=ζ(s)y−s
Pareto分布
假设
X
∼
U
[
0
,
1
]
X \sim U[0,1]
X∼U[0,1],
Y
=
g
(
X
)
=
X
p
Y=g(X)=X^p
Y=g(X)=Xp,则
f
Y
(
y
)
=
f
X
(
g
−
1
(
y
)
)
∣
h
′
(
y
)
∣
=
f
X
(
y
−
p
)
p
y
−
(
p
+
1
)
=
p
y
−
(
p
+
1
)
f_Y(y) = f_X(g^{-1}(y))|h^{'}(y)|=f_X(y^{-p}) py^{-(p+1)} = py^{-(p+1)}
fY(y)=fX(g−1(y))∣h′(y)∣=fX(y−p)py−(p+1)=py−(p+1)
称随机变量Y服从Pareto分布。