# 次序统计量的分布

$F_{X_{(j)}} = \sum_{k=j}^n C_n^k [F(x)]^k[1-F(x)]^{n-k}$

$p = P(Y_j=1)=P(X_j \le x) = F(x)$

$F_{X_{(j)}} = P(X_{(j)} \le x) = P(S_n \ge j) \\ = \sum_{k=j}^n C_n^k [F(x)]^k[1-F(x)]^{n-k}$

$f_{X_{(j)}}(x) = jC_n^j [F(x)]^{j-1}[1-F(x)]^{n-j}f(x)$

$f_{X_{(j)}}(x) \Delta x = P(x \le X_{(j)}

1. 有一个样本在$[x,x+\Delta x)$中；
2. $j-1$个样本在$(\infty,x)$中；
3. $n-j$个样本在$[x+\Delta x,+\infty)$中；

$f_{X_{(j)}}(x) \Delta x = [C_n^1f(x) \Delta x][C_{n-1}^{j-1}[F(x)]^{j-1}][[1-F(x)]^{n-j}] \\ =jC_n^j [F(x)]^{j-1}[1-F(x)]^{n-j}f(x) \Delta x$

$f_{X_{(i)},X_{(j)}}(x_i,x_j)=(n)_2C_{n-2}^{i-1}C_{n-i-3}^{j-i-1}[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-i-1}[1-F(x_j)]^{n-j}$

$f_{X_{(i)},X_{(j)}}(x_i,x_j) (\Delta x)^2 = P(x_i \le X_{(i)} < x_i + \Delta x, x_j\le X_{(j)} < x_j + \Delta x)$

1. 有两个样本，一个在$[x_i,x_i+\Delta x)$中，另一个在$[x_j,x_j+\Delta x)$中；
2. $i-1$个样本在$(\infty,x_i)$中；
3. $j-i-1$个样本在$[x_i+\Delta x,x_j]$中；
4. $n-j$个样本在$[x_j+\Delta x,+\infty)$中；

$f_{X_{(i)},X_{(j)}}(x_i,x_j) (\Delta x)^2=[(n)_2f(x_i)\Delta f(x_j)\Delta x][C_{n-2}^{i-1}[F(x_i)]^{i-1}][C_{n-i-3}^{j-i-1}[F(x_j)-F(x_i)]^{j-i-1}][[1-F(x_j)]^{n-j}]$

# 例子

## 例1：均匀分布的次序统计量

$F(x)=x,f(x) = 1$

$f_{U_{(j)}}(x) = jC_n^j [F(x)]^{j-1}[1-F(x)]^{n-j}f(x) \\ = \frac{n!}{(j-1)!(n-j)!}x^{j-1}(1-x)^{n-j} \\ = \frac{\Gamma(n+1)}{\Gamma{(j)}\Gamma(n-j+1)}x^{j-1}(1-x)^{n-j}$

$f_{U_{(i)},U_{(j)}}(x_i,x_j)=(n)_2C_{n-2}^{i-1}C_{n-i-3}^{j-i-1}[F(x_i)]^{i-1}[F(x_j)-F(x_i)]^{j-i-1}[1-F(x_j)]^{n-j} \\ = \frac{n!}{(i-1)!(j-i-1)!(n-j)!}x_i^{i-1}(x_j-x_i)^{j-i-1}(1-x_j)^{n-j} \\ =\frac{\Gamma(n+1)}{\Gamma(i)\Gamma(j-i)\Gamma(n-j+1)} x_i^{i-1}(x_j-x_i)^{j-i-1}(1-x_i - (x_j-x_i))^{n-j}$
$u_i=x_i,u_j=x_j-x_i$
$f_{U_{(i)},U_{(j)}}(u_i,u_j)=\frac{\Gamma(n+1)}{\Gamma(i)\Gamma(j-i)\Gamma(n-j+1)} u_i^{i-1}u_j^{j-i-1}(1-u_i-u_j)^{n-j}$

## 例2：Dirichlet分布

$f(x|\alpha) = \frac{\Gamma(\sum_{i=1}^n \alpha_i)}{\prod_{i=1}^n \Gamma(\alpha_i)} \prod_{i=1}^n x_i^{\alpha_i-1}$

1. $\alpha_i=1,\forall i$，Dirichlet分布退化为单纯形$\Delta^n$上的均匀分布；
2. $(X_1,\cdots,X_i+X_{i+1},\cdots,X_n)\sim Dir(\alpha_1,\cdots,\alpha_i+\alpha_{i+1},\cdots,\alpha_n)$
3. $X_i \sim beta(\alpha_i,\sum_{j=1}^n \alpha_j - \alpha_i)$
4. $\{U_1,\cdots,U_n\}$$m$个次序统计量（序号为$i_{1},\cdots,i_{m}$）的联合分布为$Dir(i_1,i_2-i_2,\cdots,n-i_m+1)$

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客