UA MATH563 概率论的数学基础 鞅论初步2 条件期望的应用:推导二元随机变量的条件概率与条件期望

UA MATH563 概率论的数学基础 鞅论初步2 条件期望的应用:推导二元随机变量的相关计算公式

上一讲我们介绍了关于 σ \sigma σ-代数定义的条件期望以及关于随机变量的条件期望,这一讲我们用这些定义推导二元随机变量的条件密度、条件期望等计算公式。

我们先描述一下概率空间,取 Ω = R 2 \Omega = \mathbb{R}^2 Ω=R2,它与 B ( R 2 ) \mathcal{B}(\mathbb{R}^2) B(R2)构成可测空间,用 P P P表示定义在这个可测空间上的一个概率。 ( X , Y ) (X,Y) (X,Y)是定义在这个可测空间上的随机向量,它的概率密度是 f ( x , y ) f(x,y) f(x,y)
P ( ( X , Y ) ∈ A ) = ∫ χ A d P = ∬ A f ( x , y ) d x d y , ∀ A ∈ B ( R 2 ) P((X,Y) \in A)=\int \chi_A dP=\iint_A f(x,y)dxdy,\forall A \in \mathcal{B}(\mathbb{R}^2) P((X,Y)A)=χAdP=Af(x,y)dxdy,AB(R2)


我们要回答的第一个问题是 P ( Y ∈ B ∣ X = x ) P(Y \in B|X=x) P(YBX=x)如何计算。

考虑 ∀ x ∈ R \forall x \in \mathbb{R} xR
P ( Y ∈ B ∣ X = x ) = P ( Y − 1 ( B ) ∩ X − 1 ( x ) ) P ( X − 1 ( x ) ) = ∬ { x } × B f ( x , y ) d x d y ∬ { x } × R f ( x , y ) d x d y = ∫ B f ( x , y ) d y ∫ R f ( x , y ) d y ≜ ∫ B f ( y ∣ x ) d y P(Y \in B|X=x) = \frac{P(Y^{-1}(B) \cap X^{-1}(x))}{P(X^{-1}(x))} \\ = \frac{ \iint_{\{x\} \times B }f(x,y)dxdy}{\iint_{ \{x\} \times \mathbb{R} }f(x,y)dxdy}=\frac{\int_B f(x,y)dy}{\int_{\mathbb{R}}f(x,y)dy}\triangleq \int_B f(y|x)dy P(YBX=x)=P(X1(x))P(Y1(B)X1(x))={x}×Rf(x,y)dxdy{x}×Bf(x,y)dxdy=Rf(x,y)dyBf(x,y)dyBf(yx)dy

其中 ∫ R f ( x , y ) d y \int_{\mathbb{R}}f(x,y)dy Rf(x,y)dy X X X边缘密度,记为 f X ( x ) f_X(x) fX(x) f ( y ∣ x ) f(y|x) f(yx) Y ∣ X = x Y|X=x YX=x的概率密度,称之为 Y Y Y关于 X X X条件密度
f ( y ∣ x ) = f ( x , y ) f X ( x ) f(y|x) = \frac{f(x,y)}{f_X(x)} f(yx)=fX(x)f(x,y)

表面上看我们仿佛得到了一个条件密度的公式,根据这个公式可以计算条件概率,但是这个公式还不是很严谨,因为 ( X , Y ) ∈ R 2 (X,Y) \in \mathbb{R}^2 (X,Y)R2 x x x的取值有可能使得 f X ( x ) = 0 f_X(x)=0 fX(x)=0,所以接下来我们要处理一下 f X ( x ) = 0 f_X(x)=0 fX(x)=0的情况。计算
P ( { x : f X ( x ) = 0 } ) = ∬ { x : f X ( x ) = 0 } × R f ( x , y ) d x d y P(\{x:f_X(x)=0\})=\iint_{\{x:f_X(x)=0\} \times \mathbb{R}}f(x,y)dxdy P({x:fX(x)=0})={x:fX(x)=0}×Rf(x,y)dxdy

根据Fubini-Tonelli定理,交换积分次序
P ( { x : f X ( x ) = 0 } ) = ∬ { x : f X ( x ) = 0 } × R f ( x , y ) d y d x = ∫ { x : f X ( x ) = 0 } f X ( x ) d x = 0 P(\{x:f_X(x)=0\})=\iint_{\{x:f_X(x)=0\} \times \mathbb{R}}f(x,y)dydx \\ = \int_{\{x:f_X(x)=0\}}f_X(x)dx=0 P({x:fX(x)=0})={x:fX(x)=0}×Rf(x,y)dydx={x:fX(x)=0}fX(x)dx=0

这说明 { x : f X ( x ) = 0 } \{x:f_X(x)=0\} {x:fX(x)=0}是一个零测集,因此支撑集 s u p p f X ( x ) = { x : f X ( x ) > 0 } supp f_X(x)=\{x:f_X(x)>0\} suppfX(x)={x:fX(x)>0}几乎必然等于 R \mathbb{R} R,在分析时我们总是可以用支撑集代替全集进行计算。


接下来我们讨论第二个问题, E [ g ( Y ) ∣ X ] E[g(Y)|X] E[g(Y)X]如何计算,其中 g g g是Borel可测函数。

我们可以基于上面定义的条件密度计算
E [ g ( Y ) ∣ X ] = ∫ R g ( y ) f ( y ∣ X ) d y E[g(Y)|X]=\int_{\mathbb{R}} g(y)f(y|X)dy E[g(Y)X]=Rg(y)f(yX)dy

这里就涉及 f ( y ∣ X ) f(y|X) f(yX)这个我们没定义过的东西了,所以接下来我们定义一下它。
f ( y ∣ X ) = P ( Y − 1 ( y ) ∣ X ) = P ( Y − 1 ( y ) ∣ σ ( X ) ) = P ( Y − 1 ( y ) ∩ σ ( X ) ) P ( σ ( X ) ) = f ( X , y ) ∫ y f ( X , y ) d y f(y|X)=P(Y^{-1}(y)|X)=P(Y^{-1}(y)|\sigma(X)) \\=\frac{P(Y^{-1}(y)\cap \sigma(X))}{P(\sigma(X))}=\frac{f(X,y)}{\int_{\mathbb{y}}f(X,y)dy} f(yX)=P(Y1(y)X)=P(Y1(y)σ(X))=P(σ(X))P(Y1(y)σ(X))=yf(X,y)dyf(X,y)

这个推导中需要注意的是关于 X X X的条件概率就是关于 σ ( X ) \sigma(X) σ(X)的条件概率,这种条件概率依然是随机变量,因此 f ( y ∣ X ) f(y|X) f(yX)也是随机变量。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页