UA MATH523A 实分析3 积分理论17 Fubini-Tonelli定理

UA MATH523A 实分析3 积分理论17 Fubini-Tonelli定理

经过15讲16讲的铺垫,我们现在可以建立重积分计算的Fubini-Tonelli定理了。这三篇博文是按照Folland的教材的内容和逻辑展开的。Folland建立Fubini理论的逻辑是先建立集合的特征函数的重积分与累次积分的关系,然后推广到一般函数;不同的作者建立Fubini理论的逻辑有所不同,大家可以参考夏道行、徐森林、Rudin、那汤松等人的著作了解其他的建立方式。

Fubini-Tonelli定理 ( X , M , μ ) (X,\mathcal{M},\mu) (X,M,μ) ( Y , N , ν ) (Y,\mathcal{N},\nu) (Y,N,ν)是有 σ \sigma σ-有限测度的测度空间。

  1. (Tonelli) f ∈ L + ( X × Y ) f \in L^+(X \times Y) fL+(X×Y) g ( x ) = ∫ f x d ν = ∫ f ( x , y ) d ν ( y ) h ( y ) = ∫ f y d μ = ∫ f ( x , y ) d μ ( x ) g(x)=\int f_x d\nu=\int f(x,y)d\nu(y)\\ h(y)=\int f^y d \mu=\int f(x,y)d\mu(x) g(x)=fxdν=f(x,y)dν(y)h(y)=fydμ=f(x,y)dμ(x) g ∈ L + ( X ) , h ∈ L + ( Y ) g \in L^+(X),h \in L^+(Y) gL+(X),hL+(Y),并且 ∫ f d ( μ × ν ) = ∫ g d μ = ∫ f d ν \int f d(\mu \times \nu)=\int gd\mu = \int f d \nu fd(μ×ν)=gdμ=fdν
  2. (Fubini) f ∈ L 1 ( X × Y ) f \in L^1(X \times Y) fL1(X×Y) g ( x ) = ∫ f x d ν = ∫ f ( x , y ) d ν ( y ) h ( y ) = ∫ f y d μ = ∫ f ( x , y ) d μ ( x ) g(x)=\int f_x d\nu=\int f(x,y)d\nu(y)\\ h(y)=\int f^y d \mu=\int f(x,y)d\mu(x) g(x)=fxdν=f(x,y)dν(y)h(y)=fydμ=f(x,y)dμ(x) f x ∈ L 1 ( Y ) , f y ∈ L 1 ( X ) , g ∈ L 1 ( X ) , h ∈ L 1 ( Y ) f_x \in L^1(Y),f^y \in L^1(X),g \in L^1(X),h \in L^1(Y) fxL1(Y),fyL1(X),gL1(X),hL1(Y)并且 ∫ f d ( μ × ν ) = ∫ g d μ = ∫ f d ν \int f d(\mu \times \nu)=\int gd\mu = \int f d \nu fd(μ×ν)=gdμ=fdν

Fubini与Tonelli处理的其实都是化重积分为累次积分的问题,但是Tonelli要求函数是 L + L^+ L+的,也就是Lebesgue可积的非负函数,而Fubini定理适用范围是 L 1 L^1 L1,即可积函数即可,包括可积的实值函数与复值函数等,所以可以处理的情况比Tonelli更多。

评注 我们简单讨论一下这两个定理的应用。正如上面这个注所言,在计算时我们肯定是以Fubini定理为依据,化重积分为累次积分,或者交换累次积分的次序来简化计算,但是Fubini定理要求重积分的被积函数 f f f L 1 L^1 L1的,也就是说我们在使用Fubini之前需要验证
∫ ∣ f ∣ d ( μ × ν ) < ∞ \int |f|d(\mu \times \nu)<\infty fd(μ×ν)<

显然 ∣ f ∣ |f| f是一个非负函数,因此我们根据Tonelli定理,验证上述重积分的某个累次积分有限即可,完成这个验证后,我们再使用Fubini定理进行计算。


证明Tonelli定理

第一部分:假设 f = χ E , E ∈ M ⊗ N f=\chi_E,E \in \mathcal{M} \otimes \mathcal{N} f=χE,EMN,根据上一讲证过的特征函数的Fubini定理可得,Tonelli定理成立,并且根据积分的线性性可知Tonelli定理对简单可测函数也成立。

第二部分: ∀ f ∈ L + ( X × Y ) \forall f \in L^+(X \times Y) fL+(X×Y),可以找到一个简单函数 { f n } ⊂ L + ( X × Y ) \{f_n\}\subset L^+(X \times Y) {fn}L+(X×Y),使得
f n ( x , y ) ↑ f ( x , y ) , ∀ ( x , y ) ∈ X × Y f_n(x,y) \uparrow f(x,y),\forall (x,y) \in X \times Y fn(x,y)f(x,y),(x,y)X×Y

根据第一部分, ∀ n ≥ 1 \forall n \ge 1 n1
∫ f n d ( μ × ν ) = ∬ f n d ν d μ = ∬ f n d μ d ν \int f_nd(\mu \times \nu) = \iint f_n d\nu d\mu = \iint f_n d\mu d\nu fnd(μ×ν)=fndνdμ=fndμdν

g n = ∫ f n d ν ,    h n = ∫ f n d μ g_n=\int f_n d\nu ,\ \ h_n=\int f_n d\mu gn=fndν,  hn=fndμ

g n , h n g_n,h_n gn,hn非负可测递增。根据单调收敛定理,
g = ∫ f d ν = lim ⁡ n → ∞ ∫ f n d ν = lim ⁡ n → ∞ g n g=\int f d \nu = \lim_{n \to \infty}\int f_n d\nu = \lim_{n \to \infty} g_n g=fdν=nlimfndν=nlimgn

也就是 g g g存在且非负可测。类似地,
h = ∫ f d μ = lim ⁡ n → ∞ ∫ f n d μ = lim ⁡ n → ∞ h n h=\int f d \mu = \lim_{n \to \infty}\int f_n d\mu = \lim_{n \to \infty} h_n h=fdμ=nlimfndμ=nlimhn

所以 h h h存在且非负可测。接下来我们计算积分,
∫ g d μ = lim ⁡ n → ∞ ∫ g n d μ = lim ⁡ n → ∞ ∬ f n d ν d μ = lim ⁡ n → ∞ ∫ f n d ( ν × μ ) = ∫ f d ( μ × ν ) \int g d \mu = \lim_{n\to \infty}\int g_nd \mu = \lim_{n\to \infty}\iint f_n d\nu d \mu \\= \lim_{n\to \infty}\int f_n d(\nu \times \mu) = \int f d (\mu \times \nu) gdμ=nlimgndμ=nlimfndνdμ=nlimfnd(ν×μ)=fd(μ×ν) ∫ h d ν = lim ⁡ n → ∞ ∫ h n d ν = lim ⁡ n → ∞ ∬ f n d μ d ν = lim ⁡ n → ∞ ∫ f n d ( ν × μ ) = ∫ f d ( μ × ν ) \int h d \nu = \lim_{n\to \infty}\int h_nd \nu = \lim_{n\to \infty}\iint f_n d\mu d \nu \\= \lim_{n\to \infty}\int f_n d(\nu \times \mu) = \int f d (\mu \times \nu) hdν=nlimhndν=nlimfndμdν=nlimfnd(ν×μ)=fd(μ×ν)

这样我们就完成了Tonelli定理的证明。


证明Fubini定理
第一部分:因为Fubini定理的结论与Tonelli要多一点,我们先考虑在Tonelli的条件下,Fubini成立,也就是考虑 ∀ f ∈ L + ( X , Y ) \forall f \in L^+(X,Y) fL+(X,Y),我们要说明 f x ∈ L 1 ( Y ) , f y ∈ L 1 ( X ) f_x\in L^1(Y),f^y \in L^1(X) fxL1(Y),fyL1(X)。因为
∫ g d μ = ∫ h d ν = ∫ f d ( μ × ν ) < ∞ \int g d\mu = \int h d \nu = \int f d (\mu \times \nu)<\infty gdμ=hdν=fd(μ×ν)<

所以 g , h g,h g,h几乎处处有限。又因为
g = ∫ f x d ν ,   h = ∫ f y d μ g = \int f_x d \nu, \ h = \int f^y d \mu g=fxdν, h=fydμ

所以 f x ∈ L 1 ( Y ) , f y ∈ L 1 ( X ) f_x \in L^1(Y),f^y \in L^1(X) fxL1(Y),fyL1(X)几乎处处成立。

第二部分: ∀ f ∈ L 1 ( X × Y ) \forall f \in L^1(X \times Y) fL1(X×Y),做非常一般性的讨论,假设 f f f是复值函数,我们可以把 f f f分解为
f = ( R e [ f ] + − R e [ f ] − ) + i ( I m [ f ] + − I m [ f ] − ) f = (Re[f]^+-Re[f]^-)+i(Im[f]^+-Im[f]^-) f=(Re[f]+Re[f])+i(Im[f]+Im[f])

对这四部分使用Tonelli定理,再根据线性性可知,Fubini定理成立。

证毕


下面是两个Fubini定理的例题供大家参考学习:
UA MATH523A 实分析3 积分理论例题 Fubini定理证明积分不等式

UA MATH523A 实分析3 积分理论例题 Fubini定理计算一元积分

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页