UA MATH523A 实分析3 积分理论17 Fubini-Tonelli定理
经过15讲与16讲的铺垫,我们现在可以建立重积分计算的Fubini-Tonelli定理了。这三篇博文是按照Folland的教材的内容和逻辑展开的。Folland建立Fubini理论的逻辑是先建立集合的特征函数的重积分与累次积分的关系,然后推广到一般函数;不同的作者建立Fubini理论的逻辑有所不同,大家可以参考夏道行、徐森林、Rudin、那汤松等人的著作了解其他的建立方式。
Fubini-Tonelli定理 ( X , M , μ ) (X,\mathcal{M},\mu) (X,M,μ)与 ( Y , N , ν ) (Y,\mathcal{N},\nu) (Y,N,ν)是有 σ \sigma σ-有限测度的测度空间。
- (Tonelli) f ∈ L + ( X × Y ) f \in L^+(X \times Y) f∈L+(X×Y), g ( x ) = ∫ f x d ν = ∫ f ( x , y ) d ν ( y ) h ( y ) = ∫ f y d μ = ∫ f ( x , y ) d μ ( x ) g(x)=\int f_x d\nu=\int f(x,y)d\nu(y)\\ h(y)=\int f^y d \mu=\int f(x,y)d\mu(x) g(x)=∫fxdν=∫f(x,y)dν(y)h(y)=∫fydμ=∫f(x,y)dμ(x)则 g ∈ L + ( X ) , h ∈ L + ( Y ) g \in L^+(X),h \in L^+(Y) g∈L+(X),h∈L+(Y),并且 ∫ f d ( μ × ν ) = ∫ g d μ = ∫ f d ν \int f d(\mu \times \nu)=\int gd\mu = \int f d \nu ∫fd(μ×ν)=∫gdμ=∫fdν
- (Fubini) f ∈ L 1 ( X × Y ) f \in L^1(X \times Y) f∈L1(X×Y), g ( x ) = ∫ f x d ν = ∫ f ( x , y ) d ν ( y ) h ( y ) = ∫ f y d μ = ∫ f ( x , y ) d μ ( x ) g(x)=\int f_x d\nu=\int f(x,y)d\nu(y)\\ h(y)=\int f^y d \mu=\int f(x,y)d\mu(x) g(x)=∫fxdν=∫f(x,y)dν(y)h(y)=∫fydμ=∫f(x,y)dμ(x)则 f x ∈ L 1 ( Y ) , f y ∈ L 1 ( X ) , g ∈ L 1 ( X ) , h ∈ L 1 ( Y ) f_x \in L^1(Y),f^y \in L^1(X),g \in L^1(X),h \in L^1(Y) fx∈L1(Y),fy∈L1(X),g∈L1(X),h∈L1(Y)并且 ∫ f d ( μ × ν ) = ∫ g d μ = ∫ f d ν \int f d(\mu \times \nu)=\int gd\mu = \int f d \nu ∫fd(μ×ν)=∫gdμ=∫fdν
注 Fubini与Tonelli处理的其实都是化重积分为累次积分的问题,但是Tonelli要求函数是 L + L^+ L+的,也就是Lebesgue可积的非负函数,而Fubini定理适用范围是 L 1 L^1 L1,即可积函数即可,包括可积的实值函数与复值函数等,所以可以处理的情况比Tonelli更多。
评注 我们简单讨论一下这两个定理的应用。正如上面这个注所言,在计算时我们肯定是以Fubini定理为依据,化重积分为累次积分,或者交换累次积分的次序来简化计算,但是Fubini定理要求重积分的被积函数
f
f
f是
L
1
L^1
L1的,也就是说我们在使用Fubini之前需要验证
∫
∣
f
∣
d
(
μ
×
ν
)
<
∞
\int |f|d(\mu \times \nu)<\infty
∫∣f∣d(μ×ν)<∞
显然 ∣ f ∣ |f| ∣f∣是一个非负函数,因此我们根据Tonelli定理,验证上述重积分的某个累次积分有限即可,完成这个验证后,我们再使用Fubini定理进行计算。
证明Tonelli定理
第一部分:假设 f = χ E , E ∈ M ⊗ N f=\chi_E,E \in \mathcal{M} \otimes \mathcal{N} f=χE,E∈M⊗N,根据上一讲证过的特征函数的Fubini定理可得,Tonelli定理成立,并且根据积分的线性性可知Tonelli定理对简单可测函数也成立。
第二部分:
∀
f
∈
L
+
(
X
×
Y
)
\forall f \in L^+(X \times Y)
∀f∈L+(X×Y),可以找到一个简单函数
{
f
n
}
⊂
L
+
(
X
×
Y
)
\{f_n\}\subset L^+(X \times Y)
{fn}⊂L+(X×Y),使得
f
n
(
x
,
y
)
↑
f
(
x
,
y
)
,
∀
(
x
,
y
)
∈
X
×
Y
f_n(x,y) \uparrow f(x,y),\forall (x,y) \in X \times Y
fn(x,y)↑f(x,y),∀(x,y)∈X×Y
根据第一部分,
∀
n
≥
1
\forall n \ge 1
∀n≥1,
∫
f
n
d
(
μ
×
ν
)
=
∬
f
n
d
ν
d
μ
=
∬
f
n
d
μ
d
ν
\int f_nd(\mu \times \nu) = \iint f_n d\nu d\mu = \iint f_n d\mu d\nu
∫fnd(μ×ν)=∬fndνdμ=∬fndμdν
记 g n = ∫ f n d ν , h n = ∫ f n d μ g_n=\int f_n d\nu ,\ \ h_n=\int f_n d\mu gn=∫fndν, hn=∫fndμ
则
g
n
,
h
n
g_n,h_n
gn,hn非负可测递增。根据单调收敛定理,
g
=
∫
f
d
ν
=
lim
n
→
∞
∫
f
n
d
ν
=
lim
n
→
∞
g
n
g=\int f d \nu = \lim_{n \to \infty}\int f_n d\nu = \lim_{n \to \infty} g_n
g=∫fdν=n→∞lim∫fndν=n→∞limgn
也就是
g
g
g存在且非负可测。类似地,
h
=
∫
f
d
μ
=
lim
n
→
∞
∫
f
n
d
μ
=
lim
n
→
∞
h
n
h=\int f d \mu = \lim_{n \to \infty}\int f_n d\mu = \lim_{n \to \infty} h_n
h=∫fdμ=n→∞lim∫fndμ=n→∞limhn
所以
h
h
h存在且非负可测。接下来我们计算积分,
∫
g
d
μ
=
lim
n
→
∞
∫
g
n
d
μ
=
lim
n
→
∞
∬
f
n
d
ν
d
μ
=
lim
n
→
∞
∫
f
n
d
(
ν
×
μ
)
=
∫
f
d
(
μ
×
ν
)
\int g d \mu = \lim_{n\to \infty}\int g_nd \mu = \lim_{n\to \infty}\iint f_n d\nu d \mu \\= \lim_{n\to \infty}\int f_n d(\nu \times \mu) = \int f d (\mu \times \nu)
∫gdμ=n→∞lim∫gndμ=n→∞lim∬fndνdμ=n→∞lim∫fnd(ν×μ)=∫fd(μ×ν)
∫
h
d
ν
=
lim
n
→
∞
∫
h
n
d
ν
=
lim
n
→
∞
∬
f
n
d
μ
d
ν
=
lim
n
→
∞
∫
f
n
d
(
ν
×
μ
)
=
∫
f
d
(
μ
×
ν
)
\int h d \nu = \lim_{n\to \infty}\int h_nd \nu = \lim_{n\to \infty}\iint f_n d\mu d \nu \\= \lim_{n\to \infty}\int f_n d(\nu \times \mu) = \int f d (\mu \times \nu)
∫hdν=n→∞lim∫hndν=n→∞lim∬fndμdν=n→∞lim∫fnd(ν×μ)=∫fd(μ×ν)
这样我们就完成了Tonelli定理的证明。
证明Fubini定理
第一部分:因为Fubini定理的结论与Tonelli要多一点,我们先考虑在Tonelli的条件下,Fubini成立,也就是考虑
∀
f
∈
L
+
(
X
,
Y
)
\forall f \in L^+(X,Y)
∀f∈L+(X,Y),我们要说明
f
x
∈
L
1
(
Y
)
,
f
y
∈
L
1
(
X
)
f_x\in L^1(Y),f^y \in L^1(X)
fx∈L1(Y),fy∈L1(X)。因为
∫
g
d
μ
=
∫
h
d
ν
=
∫
f
d
(
μ
×
ν
)
<
∞
\int g d\mu = \int h d \nu = \int f d (\mu \times \nu)<\infty
∫gdμ=∫hdν=∫fd(μ×ν)<∞
所以
g
,
h
g,h
g,h几乎处处有限。又因为
g
=
∫
f
x
d
ν
,
h
=
∫
f
y
d
μ
g = \int f_x d \nu, \ h = \int f^y d \mu
g=∫fxdν, h=∫fydμ
所以 f x ∈ L 1 ( Y ) , f y ∈ L 1 ( X ) f_x \in L^1(Y),f^y \in L^1(X) fx∈L1(Y),fy∈L1(X)几乎处处成立。
第二部分:
∀
f
∈
L
1
(
X
×
Y
)
\forall f \in L^1(X \times Y)
∀f∈L1(X×Y),做非常一般性的讨论,假设
f
f
f是复值函数,我们可以把
f
f
f分解为
f
=
(
R
e
[
f
]
+
−
R
e
[
f
]
−
)
+
i
(
I
m
[
f
]
+
−
I
m
[
f
]
−
)
f = (Re[f]^+-Re[f]^-)+i(Im[f]^+-Im[f]^-)
f=(Re[f]+−Re[f]−)+i(Im[f]+−Im[f]−)
对这四部分使用Tonelli定理,再根据线性性可知,Fubini定理成立。
证毕
下面是两个Fubini定理的例题供大家参考学习:
UA MATH523A 实分析3 积分理论例题 Fubini定理证明积分不等式