# UA MATH563 概率论的数学基础 鞅论初步7 停时与Upcrossing不等式

### UA MATH563 概率论的数学基础 鞅论初步7 停时与Upcrossing不等式

{ w ∈ Ω : N ( w ) ≤ n } ∈ F n \{w\in \Omega:N(w) \le n\} \in \mathcal{F}_n

{ w ∈ Ω : N ( w ) = n } ∈ F n \{w\in \Omega:N(w) = n\} \in \mathcal{F}_n

i）定义
N = inf ⁡ { n ≥ 0 : X n ≥ A } N = \inf\{n \ge 0:X_n \ge A\}

{ w ∈ Ω : N ( w ) ≤ n } = { w ∈ Ω : N ( w ) > n } C = { w : X 0 , ⋯   , X n < A } C ∈ F n \{w\in \Omega:N(w) \le n\} = \{w\in \Omega:N(w) > n\}^C \\ = \{w:X_0,\cdots,X_n<A\}^C \in \mathcal{F}_n

ii）定义
M = sup ⁡ { n ≥ 0 : X n ≥ A } M=\sup\{n \ge 0:X_n \ge A\}

M M 不是停时，
{ w : M ( w ) = n } = { w : X n ( w ) ≥ A , ⋯   , X t < A , ∀ t ≥ n + 1 } \{w:M(w)=n\}=\{w:X_n(w)\ge A,\cdots,X_{t} <A,\forall t \ge n+1\}

iii）如果 N N 是常数，则 N N 是停时。

iv）定义
N B = inf ⁡ { n ≥ 0 : X n ∈ B } , B ∈ B ( R ) N_B = \inf\{n \ge 0:X_n \in B\},B \in \mathcal{B}(\mathbb{R})

N B N_B 是停时：
{ w : N B ( w ) = n } = { X n ∈ B , X 0 ⋯   , X n − 1 ∈ B C } = { X n ∈ B } ∩ { X 0 ∈ B C } ⋯ ∩ { X n − 1 ∈ B C } \{w:N_B(w)=n\}=\{X_n \in B,X_0 \cdots ,X_{n-1} \in B^C\} \\ = \{X_n \in B\} \cap \{X_0 \in B^C\} \cdots \cap \{X_{n-1} \in B^C\}

N B ( 2 ) = inf ⁡ { n > N B : X n ∈ B } N B ( k ) = inf ⁡ { n > N B ( k − 1 ) : X n ∈ B } , k > 2 N_B^{(2)} = \inf\{n > N_B:X_n \in B\}\\N_B^{(k)} = \inf\{n > N_B^{(k-1)}:X_n \in B\},k>2

N B ( k ) N_B^{(k)} 是停时， ∀ k ≥ 2 \forall k \ge 2 ，以 k = 2 k=2 为例：
{ N B ( 2 ) = n } = ∪ m < n { X n ∈ B , X m ∈ B , X j ∈ B C , 0 ≤ j < n , j ≠ m } \{N_B^{(2)}=n\}=\cup_{m < n}\{X_n \in B,X_m \in B,X_j \in B^C,0 \le j<n,j \ne m\}

{ min ⁡ ( T 1 , T 2 ) ≤ n } = { min ⁡ ( T 1 , T 2 ) > n } C = ( { T 1 > n } ∩ { T 2 > n } ) C = { T 1 > n } C ∪ { T 2 > n } C ∈ { F n } \{\min(T_1,T_2) \le n\} =\{\min(T_1,T_2) > n\}^C \\ = (\{T_1>n\} \cap \{T_2>n\})^C = \{T_1>n\}^C \cup \{T_2>n\}^C \in \{\mathcal{F}_n\}

Doob’s inequality (Upcrossing Inequality) 假设 { X n } \{X_n\} 是一个 { F n } \{\mathcal{F}_n\} 上的submartingale， a < b a<b N 0 = − 1 N_0=-1 ,
N 1 = inf ⁡ { m > N 0 : X m ≤ a } N 2 = inf ⁡ { m > N 1 : X m ≥ b } ⋯ N 2 k − 1 = inf ⁡ { m > N 2 k − 2 : X m ≤ a } N 2 k = inf ⁡ { m ≥ N 2 k − 1 : X m ≥ b } N_1=\inf\{m>N_0:X_m \le a\} \\ N_2 = \inf\{m >N_1:X_m \ge b\} \\ \cdots \\ N_{2k-1} = \inf\{m>N_{2k-2}:X_m \le a\} \\ N_{2k} = \inf\{m \ge N_{2k-1}:X_m \ge b\}

U n = sup ⁡ { k : N 2 k ≤ n } U_n = \sup\{k:N_{2k} \le n\}

( b − a ) E U n ≤ E [ ( X n − a ) + ] − E [ ( X 0 − a ) + ] (b-a)EU_n \le E[(X_n-a)^+]-E[(X_0-a)^+]

P ( X n < 1 , ∃ n ) = 1 P(X_n<1,\exists n)=1

• 点赞
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 打赏

打赏

一个不愿透露姓名的孩子

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 举报
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文

06-20 2506
07-04 2549
02-07 119
12-23 170
12-21 4435
06-06 43
04-27 128
09-21 58
08-17 193