UA MATH563 概率论的数学基础 鞅论初步7 停时与Upcrossing不等式
这一讲我们引入一个非常重要的概念——停时(Stopping time)。
假设
{
F
n
}
\{\mathcal{F}_n\}
{Fn}是一个filtration,称随机变量
N
:
Ω
→
N
N:\Omega \to \mathbb{N}
N:Ω→N是
{
F
n
}
\{\mathcal{F}_n\}
{Fn}上的一个停时,如果
∀
n
<
∞
\forall n <\infty
∀n<∞,
{
w
∈
Ω
:
N
(
w
)
≤
n
}
∈
F
n
\{w\in \Omega:N(w) \le n\} \in \mathcal{F}_n
{w∈Ω:N(w)≤n}∈Fn
或者用等价地
{
w
∈
Ω
:
N
(
w
)
=
n
}
∈
F
n
\{w\in \Omega:N(w) = n\} \in \mathcal{F}_n
{w∈Ω:N(w)=n}∈Fn
例 验证一个随机变量是停时 { X n } n ≥ 0 \{X_n\}_{n \ge 0} {Xn}n≥0是一列随机变量, F n = σ ( X 0 , ⋯ , X n ) , ∀ n ≥ 0 \mathcal{F}_n = \sigma(X_0,\cdots,X_n),\forall n \ge 0 Fn=σ(X0,⋯,Xn),∀n≥0。用停时的定义验证一个随机变量是否是停时:
i)定义
N
=
inf
{
n
≥
0
:
X
n
≥
A
}
N = \inf\{n \ge 0:X_n \ge A\}
N=inf{n≥0:Xn≥A}
验证
N
N
N是停时:
{
w
∈
Ω
:
N
(
w
)
≤
n
}
=
{
w
∈
Ω
:
N
(
w
)
>
n
}
C
=
{
w
:
X
0
,
⋯
,
X
n
<
A
}
C
∈
F
n
\{w\in \Omega:N(w) \le n\} = \{w\in \Omega:N(w) > n\}^C \\ = \{w:X_0,\cdots,X_n<A\}^C \in \mathcal{F}_n
{w∈Ω:N(w)≤n}={w∈Ω:N(w)>n}C={w:X0,⋯,Xn<A}C∈Fn
ii)定义
M
=
sup
{
n
≥
0
:
X
n
≥
A
}
M=\sup\{n \ge 0:X_n \ge A\}
M=sup{n≥0:Xn≥A}
则
M
M
M不是停时,
{
w
:
M
(
w
)
=
n
}
=
{
w
:
X
n
(
w
)
≥
A
,
⋯
,
X
t
<
A
,
∀
t
≥
n
+
1
}
\{w:M(w)=n\}=\{w:X_n(w)\ge A,\cdots,X_{t} <A,\forall t \ge n+1\}
{w:M(w)=n}={w:Xn(w)≥A,⋯,Xt<A,∀t≥n+1}
显然是不属于 F n \mathcal{F}_n Fn,因为 F n \mathcal{F}_n Fn只由前 n n n个随机变量生成。
iii)如果 N N N是常数,则 N N N是停时。
iv)定义
N
B
=
inf
{
n
≥
0
:
X
n
∈
B
}
,
B
∈
B
(
R
)
N_B = \inf\{n \ge 0:X_n \in B\},B \in \mathcal{B}(\mathbb{R})
NB=inf{n≥0:Xn∈B},B∈B(R)
则
N
B
N_B
NB是停时:
{
w
:
N
B
(
w
)
=
n
}
=
{
X
n
∈
B
,
X
0
⋯
,
X
n
−
1
∈
B
C
}
=
{
X
n
∈
B
}
∩
{
X
0
∈
B
C
}
⋯
∩
{
X
n
−
1
∈
B
C
}
\{w:N_B(w)=n\}=\{X_n \in B,X_0 \cdots ,X_{n-1} \in B^C\} \\ = \{X_n \in B\} \cap \{X_0 \in B^C\} \cdots \cap \{X_{n-1} \in B^C\}
{w:NB(w)=n}={Xn∈B,X0⋯,Xn−1∈BC}={Xn∈B}∩{X0∈BC}⋯∩{Xn−1∈BC}
每一个集合都属于 F n \mathcal{F}_n Fn,因此它们的交集属于 F n \mathcal{F}_n Fn。
定义
N
B
(
2
)
=
inf
{
n
>
N
B
:
X
n
∈
B
}
N
B
(
k
)
=
inf
{
n
>
N
B
(
k
−
1
)
:
X
n
∈
B
}
,
k
>
2
N_B^{(2)} = \inf\{n > N_B:X_n \in B\}\\N_B^{(k)} = \inf\{n > N_B^{(k-1)}:X_n \in B\},k>2
NB(2)=inf{n>NB:Xn∈B}NB(k)=inf{n>NB(k−1):Xn∈B},k>2
则
N
B
(
k
)
N_B^{(k)}
NB(k)是停时,
∀
k
≥
2
\forall k \ge 2
∀k≥2,以
k
=
2
k=2
k=2为例:
{
N
B
(
2
)
=
n
}
=
∪
m
<
n
{
X
n
∈
B
,
X
m
∈
B
,
X
j
∈
B
C
,
0
≤
j
<
n
,
j
≠
m
}
\{N_B^{(2)}=n\}=\cup_{m < n}\{X_n \in B,X_m \in B,X_j \in B^C,0 \le j<n,j \ne m\}
{NB(2)=n}=∪m<n{Xn∈B,Xm∈B,Xj∈BC,0≤j<n,j=m}
引理1 假设 T 1 , T 2 T_1,T_2 T1,T2是 { F n } \{\mathcal{F}_n\} {Fn}上的停时,则 min ( T 1 , T 2 ) \min(T_1,T_2) min(T1,T2)也是停时。
证明
{
min
(
T
1
,
T
2
)
≤
n
}
=
{
min
(
T
1
,
T
2
)
>
n
}
C
=
(
{
T
1
>
n
}
∩
{
T
2
>
n
}
)
C
=
{
T
1
>
n
}
C
∪
{
T
2
>
n
}
C
∈
{
F
n
}
\{\min(T_1,T_2) \le n\} =\{\min(T_1,T_2) > n\}^C \\ = (\{T_1>n\} \cap \{T_2>n\})^C = \{T_1>n\}^C \cup \{T_2>n\}^C \in \{\mathcal{F}_n\}
{min(T1,T2)≤n}={min(T1,T2)>n}C=({T1>n}∩{T2>n})C={T1>n}C∪{T2>n}C∈{Fn}
证毕
Doob’s inequality (Upcrossing Inequality) 假设
{
X
n
}
\{X_n\}
{Xn}是一个
{
F
n
}
\{\mathcal{F}_n\}
{Fn}上的submartingale,
a
<
b
a<b
a<b,
N
0
=
−
1
N_0=-1
N0=−1,
N
1
=
inf
{
m
>
N
0
:
X
m
≤
a
}
N
2
=
inf
{
m
>
N
1
:
X
m
≥
b
}
⋯
N
2
k
−
1
=
inf
{
m
>
N
2
k
−
2
:
X
m
≤
a
}
N
2
k
=
inf
{
m
≥
N
2
k
−
1
:
X
m
≥
b
}
N_1=\inf\{m>N_0:X_m \le a\} \\ N_2 = \inf\{m >N_1:X_m \ge b\} \\ \cdots \\ N_{2k-1} = \inf\{m>N_{2k-2}:X_m \le a\} \\ N_{2k} = \inf\{m \ge N_{2k-1}:X_m \ge b\}
N1=inf{m>N0:Xm≤a}N2=inf{m>N1:Xm≥b}⋯N2k−1=inf{m>N2k−2:Xm≤a}N2k=inf{m≥N2k−1:Xm≥b}
定义
U
n
=
sup
{
k
:
N
2
k
≤
n
}
U_n = \sup\{k:N_{2k} \le n\}
Un=sup{k:N2k≤n}
则
(
b
−
a
)
E
U
n
≤
E
[
(
X
n
−
a
)
+
]
−
E
[
(
X
0
−
a
)
+
]
(b-a)EU_n \le E[(X_n-a)^+]-E[(X_0-a)^+]
(b−a)EUn≤E[(Xn−a)+]−E[(X0−a)+]
我们先认可这个不等式,它的作用是证明下面这个非常重要的鞅收敛定理。
鞅收敛定理 假设 { X n } \{X_n\} {Xn}是一个 { F n } \{\mathcal{F}_n\} {Fn}上的submartingale满足 sup n E X n + < ∞ \sup_n EX_n^+<\infty supnEXn+<∞,则 X n → X , a . s X_n \to X,a.s Xn→X,a.s,并且 E ∣ X ∣ < ∞ E|X|<\infty E∣X∣<∞。
下一篇博文证明这个定理。
例 Branching Process
假设
ξ
i
j
\xi_{ij}
ξij是互相独立的取值为自然数的随机变量,
P
(
ξ
i
j
=
k
)
=
p
k
,
∀
k
≥
0
P(\xi_{ij}=k)=p_k,\forall k \ge 0
P(ξij=k)=pk,∀k≥0,记
m
=
∑
k
≥
0
k
p
k
m = \sum_{k \ge 0}kp_k
m=∑k≥0kpk,定义
X
n
=
∑
i
=
1
X
n
−
1
ξ
i
n
X_n = \sum_{i=1}^{X_{n-1}}\xi_{in}
Xn=i=1∑Xn−1ξin
在这个设定中,我们可以把
ξ
i
j
\xi_{ij}
ξij的下标
i
i
i理解为第
i
i
i户,
j
j
j理解为第
j
j
j代,
ξ
i
j
\xi_{ij}
ξij表示第
i
i
i户、第
j
j
j代有几个娃,则
X
n
X_n
Xn的含义可以是某家族第
n
n
n代的总人口数,
m
m
m表示平均每一代每一户有几个娃,可以证明
P
(
X
n
<
1
,
∃
n
)
=
1
P(X_n<1,\exists n)=1
P(Xn<1,∃n)=1
也就是如果某家族每一代每一户不足一个娃,这个家族迟早会灭绝。下一篇博文证明了鞅收敛之后再完成这个例子的证明。