UA MATH563 概率论的数学基础 鞅论初步7 停时与Upcrossing不等式

UA MATH563 概率论的数学基础 鞅论初步7 停时与Upcrossing不等式

这一讲我们引入一个非常重要的概念——停时(Stopping time)。

假设 { F n } \{\mathcal{F}_n\} {Fn}是一个filtration,称随机变量 N : Ω → N N:\Omega \to \mathbb{N} N:ΩN { F n } \{\mathcal{F}_n\} {Fn}上的一个停时,如果 ∀ n < ∞ \forall n <\infty n<
{ w ∈ Ω : N ( w ) ≤ n } ∈ F n \{w\in \Omega:N(w) \le n\} \in \mathcal{F}_n {wΩ:N(w)n}Fn

或者用等价地
{ w ∈ Ω : N ( w ) = n } ∈ F n \{w\in \Omega:N(w) = n\} \in \mathcal{F}_n {wΩ:N(w)=n}Fn

例 验证一个随机变量是停时 { X n } n ≥ 0 \{X_n\}_{n \ge 0} {Xn}n0是一列随机变量, F n = σ ( X 0 , ⋯   , X n ) , ∀ n ≥ 0 \mathcal{F}_n = \sigma(X_0,\cdots,X_n),\forall n \ge 0 Fn=σ(X0,,Xn),n0。用停时的定义验证一个随机变量是否是停时:

i)定义
N = inf ⁡ { n ≥ 0 : X n ≥ A } N = \inf\{n \ge 0:X_n \ge A\} N=inf{n0:XnA}

验证 N N N是停时:
{ w ∈ Ω : N ( w ) ≤ n } = { w ∈ Ω : N ( w ) > n } C = { w : X 0 , ⋯   , X n < A } C ∈ F n \{w\in \Omega:N(w) \le n\} = \{w\in \Omega:N(w) > n\}^C \\ = \{w:X_0,\cdots,X_n<A\}^C \in \mathcal{F}_n {wΩ:N(w)n}={wΩ:N(w)>n}C={w:X0,,Xn<A}CFn

ii)定义
M = sup ⁡ { n ≥ 0 : X n ≥ A } M=\sup\{n \ge 0:X_n \ge A\} M=sup{n0:XnA}

M M M不是停时,
{ w : M ( w ) = n } = { w : X n ( w ) ≥ A , ⋯   , X t < A , ∀ t ≥ n + 1 } \{w:M(w)=n\}=\{w:X_n(w)\ge A,\cdots,X_{t} <A,\forall t \ge n+1\} {w:M(w)=n}={w:Xn(w)A,,Xt<A,tn+1}

显然是不属于 F n \mathcal{F}_n Fn,因为 F n \mathcal{F}_n Fn只由前 n n n个随机变量生成。

iii)如果 N N N是常数,则 N N N是停时。

iv)定义
N B = inf ⁡ { n ≥ 0 : X n ∈ B } , B ∈ B ( R ) N_B = \inf\{n \ge 0:X_n \in B\},B \in \mathcal{B}(\mathbb{R}) NB=inf{n0:XnB},BB(R)

N B N_B NB是停时:
{ w : N B ( w ) = n } = { X n ∈ B , X 0 ⋯   , X n − 1 ∈ B C } = { X n ∈ B } ∩ { X 0 ∈ B C } ⋯ ∩ { X n − 1 ∈ B C } \{w:N_B(w)=n\}=\{X_n \in B,X_0 \cdots ,X_{n-1} \in B^C\} \\ = \{X_n \in B\} \cap \{X_0 \in B^C\} \cdots \cap \{X_{n-1} \in B^C\} {w:NB(w)=n}={XnB,X0,Xn1BC}={XnB}{X0BC}{Xn1BC}

每一个集合都属于 F n \mathcal{F}_n Fn,因此它们的交集属于 F n \mathcal{F}_n Fn

定义
N B ( 2 ) = inf ⁡ { n > N B : X n ∈ B } N B ( k ) = inf ⁡ { n > N B ( k − 1 ) : X n ∈ B } , k > 2 N_B^{(2)} = \inf\{n > N_B:X_n \in B\}\\N_B^{(k)} = \inf\{n > N_B^{(k-1)}:X_n \in B\},k>2 NB(2)=inf{n>NB:XnB}NB(k)=inf{n>NB(k1):XnB},k>2

N B ( k ) N_B^{(k)} NB(k)是停时, ∀ k ≥ 2 \forall k \ge 2 k2,以 k = 2 k=2 k=2为例:
{ N B ( 2 ) = n } = ∪ m < n { X n ∈ B , X m ∈ B , X j ∈ B C , 0 ≤ j < n , j ≠ m } \{N_B^{(2)}=n\}=\cup_{m < n}\{X_n \in B,X_m \in B,X_j \in B^C,0 \le j<n,j \ne m\} {NB(2)=n}=m<n{XnB,XmB,XjBC,0j<n,j=m}


引理1 假设 T 1 , T 2 T_1,T_2 T1,T2 { F n } \{\mathcal{F}_n\} {Fn}上的停时,则 min ⁡ ( T 1 , T 2 ) \min(T_1,T_2) min(T1,T2)也是停时。

证明
{ min ⁡ ( T 1 , T 2 ) ≤ n } = { min ⁡ ( T 1 , T 2 ) > n } C = ( { T 1 > n } ∩ { T 2 > n } ) C = { T 1 > n } C ∪ { T 2 > n } C ∈ { F n } \{\min(T_1,T_2) \le n\} =\{\min(T_1,T_2) > n\}^C \\ = (\{T_1>n\} \cap \{T_2>n\})^C = \{T_1>n\}^C \cup \{T_2>n\}^C \in \{\mathcal{F}_n\} {min(T1,T2)n}={min(T1,T2)>n}C=({T1>n}{T2>n})C={T1>n}C{T2>n}C{Fn}

证毕

Doob’s inequality (Upcrossing Inequality) 假设 { X n } \{X_n\} {Xn}是一个 { F n } \{\mathcal{F}_n\} {Fn}上的submartingale, a < b a<b a<b N 0 = − 1 N_0=-1 N0=1,
N 1 = inf ⁡ { m > N 0 : X m ≤ a } N 2 = inf ⁡ { m > N 1 : X m ≥ b } ⋯ N 2 k − 1 = inf ⁡ { m > N 2 k − 2 : X m ≤ a } N 2 k = inf ⁡ { m ≥ N 2 k − 1 : X m ≥ b } N_1=\inf\{m>N_0:X_m \le a\} \\ N_2 = \inf\{m >N_1:X_m \ge b\} \\ \cdots \\ N_{2k-1} = \inf\{m>N_{2k-2}:X_m \le a\} \\ N_{2k} = \inf\{m \ge N_{2k-1}:X_m \ge b\} N1=inf{m>N0:Xma}N2=inf{m>N1:Xmb}N2k1=inf{m>N2k2:Xma}N2k=inf{mN2k1:Xmb}

定义
U n = sup ⁡ { k : N 2 k ≤ n } U_n = \sup\{k:N_{2k} \le n\} Un=sup{k:N2kn}


( b − a ) E U n ≤ E [ ( X n − a ) + ] − E [ ( X 0 − a ) + ] (b-a)EU_n \le E[(X_n-a)^+]-E[(X_0-a)^+] (ba)EUnE[(Xna)+]E[(X0a)+]

我们先认可这个不等式,它的作用是证明下面这个非常重要的鞅收敛定理。

鞅收敛定理 假设 { X n } \{X_n\} {Xn}是一个 { F n } \{\mathcal{F}_n\} {Fn}上的submartingale满足 sup ⁡ n E X n + < ∞ \sup_n EX_n^+<\infty supnEXn+<,则 X n → X , a . s X_n \to X,a.s XnX,a.s,并且 E ∣ X ∣ < ∞ E|X|<\infty EX<

下一篇博文证明这个定理。


例 Branching Process
假设 ξ i j \xi_{ij} ξij是互相独立的取值为自然数的随机变量, P ( ξ i j = k ) = p k , ∀ k ≥ 0 P(\xi_{ij}=k)=p_k,\forall k \ge 0 P(ξij=k)=pk,k0,记 m = ∑ k ≥ 0 k p k m = \sum_{k \ge 0}kp_k m=k0kpk,定义 X n = ∑ i = 1 X n − 1 ξ i n X_n = \sum_{i=1}^{X_{n-1}}\xi_{in} Xn=i=1Xn1ξin

在这个设定中,我们可以把 ξ i j \xi_{ij} ξij的下标 i i i理解为第 i i i户, j j j理解为第 j j j代, ξ i j \xi_{ij} ξij表示第 i i i户、第 j j j代有几个娃,则 X n X_n Xn的含义可以是某家族第 n n n代的总人口数, m m m表示平均每一代每一户有几个娃,可以证明
P ( X n < 1 , ∃ n ) = 1 P(X_n<1,\exists n)=1 P(Xn<1,n)=1

也就是如果某家族每一代每一户不足一个娃,这个家族迟早会灭绝。下一篇博文证明了鞅收敛之后再完成这个例子的证明。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页