UA PHYS515 电磁理论II 静电场问题5 用Green函数法求解interior Dirichlet问题的例子

UA PHYS515 电磁理论II 静电场问题5 用Green函数法求解interior Dirichlet问题的例子

例2
均匀金属空心外壳厚度可忽略的接地球球心位于原点,半径为 a a a,用球坐标 ( r , θ , ϕ ) (r,\theta,\phi) (r,θ,ϕ)描述,球面上边界条件为 Φ = Φ ( a , θ , ϕ ) \Phi=\Phi(a,\theta,\phi) Φ=Φ(a,θ,ϕ),计算球内的电场。

V = { r ⃗ : ∣ r ⃗ ∣ < R } V=\{\vec r:|\vec r| < R\} V={r :r <R},边界为 S = { r ⃗ : ∣ r ⃗ ∣ = R } S=\{\vec r:|\vec r|=R\} S={r :r =R},Dirichlet条件为 Φ ( r ⃗ ) = 0 , ∀ r ⃗ ∈ S \Phi(\vec r)=0,\forall \vec r \in S Φ(r )=0,r S;写出Green函数:
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + F ( r ⃗ , r ⃗ ′ ) G(\vec r,\vec r')=\frac{1}{|\vec r - \vec r'|}+F(\vec r, \vec r') G(r ,r )=r r 1+F(r ,r )

为简化起见,我们假设沿 r ⃗ ′ \vec r' r 的方向存在一个image charge,我们假设它的电荷量为 q ′ q' q,用 n ^ ′ \hat n' n^表示与 r ⃗ ′ \vec r' r 平行的 S S S的外法向,则image charge的位置可以表示为 r ⃗ ′ ′ = r ′ ′ n ^ ′ \vec r'' = r''\hat n' r =rn^;假设测试电荷的位置为 r ⃗ \vec r r ,与它平行的 S S S的外法向为 n ^ \hat n n^,假设 n ^ \hat n n^ n ^ ′ \hat n' n^的夹角为 γ \gamma γ;于是
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + q ′ ∣ r ⃗ − r ⃗ ′ ′ ∣ = 1 ∣ r n ^ − r ′ n ^ ′ ∣ + q ′ ∣ r n ^ − r ′ ′ n ^ ∣ G(\vec r, \vec r')=\frac{1}{|\vec r - \vec r'|}+\frac{q'}{|\vec r - \vec r''|} = \frac{1}{|r \hat n-r'\hat n'|}+\frac{q'}{|r \hat n-r''\hat n|} G(r ,r )=r r 1+r r q=rn^rn^1+rn^rn^q

其中 q ′ q' q r ′ ′ r'' r是未知参数,我们需要用image charge的性质,解出这两个参数。根据 G ( r ⃗ , r ⃗ ′ ) ∣ r ⃗ ∈ S = 0 G(\vec r,\vec r')|_{\vec r \in S}=0 G(r ,r )r S=0,我们可以得到:
1 ∣ r n ^ − r ′ n ^ ′ ∣ + q ′ ∣ r n ^ − r ′ ′ n ^ ∣ = 1 r ∣ n ^ − r ′ r n ^ ′ ∣ + q ′ r ′ ′ ∣ r r ′ ′ n ^ − n ^ ′ ∣ = 0 r = a \frac{1}{|r \hat n-r'\hat n'|}+\frac{q'}{|r \hat n-r''\hat n|} = \frac{1}{r|\hat n - \frac{r'}{r}\hat n'|}+\frac{q'}{r''| \frac{r}{r''}\hat n-\hat n'|}=0 \\ r=a rn^rn^1+rn^rn^q=rn^rrn^1+rrrn^n^q=0r=a

一种可行的解是
{ q ′ r ′ ′ = − 1 r = − 1 a r r ′ ′ = a r ′ ′ = r ′ r = r ′ a ⇒ { q ′ = − a r ′ 2 r ′ ′ = a 2 r ′ \begin{cases} \frac{q'}{r''}=-\frac{1}{r} = -\frac{1}{a} \\ \frac{r}{r''} = \frac{a}{r''}=\frac{r'}{r}=\frac{r'}{a} \end{cases} \Rightarrow \begin{cases} q' = -\frac{a}{r'^2} \\ r'' = \frac{a^2}{r'} \end{cases} {rq=r1=a1rr=ra=rr=ar{q=r2ar=ra2

需要注意的是 r ⃗ ′ \vec r' r 的方向就是边界的一个外法线方向 n ^ ′ \hat n' n^,测试电荷的位置 r ⃗ \vec r r 的方向也是边界的一个外法线方向 n ^ \hat n n^,记这两个外法线方向夹角为 γ \gamma γ,则在球坐标中:
r ⃗ = r ( sin ⁡ θ cos ⁡ ϕ , sin ⁡ θ , sin ⁡ ϕ , cos ⁡ θ ) cos ⁡ γ = cos ⁡ θ cos ⁡ θ ′ + sin ⁡ θ sin ⁡ θ ′ cos ⁡ ( ϕ − ϕ ′ ) \vec r = r(\sin \theta\cos \phi,\sin \theta,\sin \phi,\cos \theta) \\ \cos \gamma= \cos \theta \cos \theta'+\sin \theta \sin \theta' \cos (\phi-\phi') r =r(sinθcosϕ,sinθ,sinϕ,cosθ)cosγ=cosθcosθ+sinθsinθcos(ϕϕ)

现在我们就可以把Green函数在球坐标系下的表达式写出来了,
G = 1 r 2 + r ′ 2 − 2 r r ′ cos ⁡ γ − 1 r 2 r ′ 2 a 2 + a 2 − 2 r r ′ cos ⁡ γ G =\frac{1}{\sqrt{r^2+r'^2-2rr'\cos \gamma}}-\frac{1}{\sqrt{\frac{r^2r'^2}{a^2}+a^2-2rr'\cos \gamma}} G=r2+r22rrcosγ 1a2r2r2+a22rrcosγ 1

Dirichlet问题的积分解:
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ − 1 4 π ∮ S ( V ) Φ ( r ⃗ ′ ) ∂ G ∂ n d S \Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz'-\frac{1}{4\pi}\oint_{S(V)} \Phi(\vec r')\frac{\partial G}{\partial n}dS Φ(r )=Vρ(r )G(r ,r )dxdydz4π1S(V)Φ(r )nGdS

因为这个题目球的内部没有source,所以第一项为零,于是我们只需计算
∂ G ∂ n = ∂ G ∂ r ′ = − r ′ − r cos ⁡ γ ( r 2 + r ′ 2 − 2 r r ′ cos ⁡ γ ) 3 / 2 + r 2 r ′ a 2 − r cos ⁡ γ ( r 2 r ′ 2 a 2 + a 2 − 2 r r ′ cos ⁡ γ ) 3 / 2 ∂ G ∂ n ∣ r ′ = a = r 2 − a 2 a ( r 2 + a 2 − 2 a r cos ⁡ γ ) 3 / 2 \frac{\partial G}{\partial n}=\frac{\partial G}{\partial r'}=-\frac{r'-r \cos \gamma}{(r^2+r'^2-2rr' \cos \gamma)^{3/2}}\\ + \frac{\frac{r^2r'}{a^2}-r\cos \gamma}{(\frac{r^2r'^2}{a^2}+a^2-2rr'\cos \gamma)^{3/2}} \\ \frac{\partial G}{\partial n}|_{r'=a} = \frac{r^2-a^2}{a(r^2+a^2-2ar\cos \gamma)^{3/2}} nG=rG=(r2+r22rrcosγ)3/2rrcosγ+(a2r2r2+a22rrcosγ)3/2a2r2rrcosγnGr=a=a(r2+a22arcosγ)3/2r2a2

因此结果为
Φ ( r , θ , ϕ ) = − 1 4 π ∮ S Φ ( a ′ , θ ′ ϕ ′ ) r 2 − a 2 a ( r 2 + a 2 − 2 a r cos ⁡ γ ) 3 / 2 d S \Phi(r,\theta,\phi)=-\frac{1}{4 \pi}\oint_S \Phi(a',\theta'\phi')\frac{r^2-a^2}{a(r^2+a^2-2ar\cos \gamma)^{3/2}}dS Φ(r,θ,ϕ)=4π1SΦ(a,θϕ)a(r2+a22arcosγ)3/2r2a2dS

其中 d S = a 2 sin ⁡ θ d θ d ϕ dS = a^2\sin \theta d \theta d\phi dS=a2sinθdθdϕ, 因此
Φ ( r , θ , ϕ ) = − 1 4 π ∬ Φ ( a ′ , θ ′ ϕ ′ ) a ( r 2 − a 2 ) sin ⁡ θ ( r 2 + a 2 − 2 a r cos ⁡ γ ) 3 / 2 d θ d ϕ \Phi(r,\theta,\phi)=-\frac{1}{4 \pi}\iint \Phi(a',\theta'\phi')\frac{a(r^2-a^2)\sin \theta}{(r^2+a^2-2ar\cos \gamma)^{3/2}}d\theta d\phi Φ(r,θ,ϕ)=4π1Φ(a,θϕ)(r2+a22arcosγ)3/2a(r2a2)sinθdθdϕ

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页