UA PHYS515 电磁理论II 静电场问题5 用Green函数法求解interior Dirichlet问题的例子
例2
均匀金属空心外壳厚度可忽略的接地球球心位于原点,半径为
a
a
a,用球坐标
(
r
,
θ
,
ϕ
)
(r,\theta,\phi)
(r,θ,ϕ)描述,球面上边界条件为
Φ
=
Φ
(
a
,
θ
,
ϕ
)
\Phi=\Phi(a,\theta,\phi)
Φ=Φ(a,θ,ϕ),计算球内的电场。
解
V
=
{
r
⃗
:
∣
r
⃗
∣
<
R
}
V=\{\vec r:|\vec r| < R\}
V={r:∣r∣<R},边界为
S
=
{
r
⃗
:
∣
r
⃗
∣
=
R
}
S=\{\vec r:|\vec r|=R\}
S={r:∣r∣=R},Dirichlet条件为
Φ
(
r
⃗
)
=
0
,
∀
r
⃗
∈
S
\Phi(\vec r)=0,\forall \vec r \in S
Φ(r)=0,∀r∈S;写出Green函数:
G
(
r
⃗
,
r
⃗
′
)
=
1
∣
r
⃗
−
r
⃗
′
∣
+
F
(
r
⃗
,
r
⃗
′
)
G(\vec r,\vec r')=\frac{1}{|\vec r - \vec r'|}+F(\vec r, \vec r')
G(r,r′)=∣r−r′∣1+F(r,r′)
为简化起见,我们假设沿
r
⃗
′
\vec r'
r′的方向存在一个image charge,我们假设它的电荷量为
q
′
q'
q′,用
n
^
′
\hat n'
n^′表示与
r
⃗
′
\vec r'
r′平行的
S
S
S的外法向,则image charge的位置可以表示为
r
⃗
′
′
=
r
′
′
n
^
′
\vec r'' = r''\hat n'
r′′=r′′n^′;假设测试电荷的位置为
r
⃗
\vec r
r,与它平行的
S
S
S的外法向为
n
^
\hat n
n^,假设
n
^
\hat n
n^与
n
^
′
\hat n'
n^′的夹角为
γ
\gamma
γ;于是
G
(
r
⃗
,
r
⃗
′
)
=
1
∣
r
⃗
−
r
⃗
′
∣
+
q
′
∣
r
⃗
−
r
⃗
′
′
∣
=
1
∣
r
n
^
−
r
′
n
^
′
∣
+
q
′
∣
r
n
^
−
r
′
′
n
^
∣
G(\vec r, \vec r')=\frac{1}{|\vec r - \vec r'|}+\frac{q'}{|\vec r - \vec r''|} = \frac{1}{|r \hat n-r'\hat n'|}+\frac{q'}{|r \hat n-r''\hat n|}
G(r,r′)=∣r−r′∣1+∣r−r′′∣q′=∣rn^−r′n^′∣1+∣rn^−r′′n^∣q′
其中
q
′
q'
q′与
r
′
′
r''
r′′是未知参数,我们需要用image charge的性质,解出这两个参数。根据
G
(
r
⃗
,
r
⃗
′
)
∣
r
⃗
∈
S
=
0
G(\vec r,\vec r')|_{\vec r \in S}=0
G(r,r′)∣r∈S=0,我们可以得到:
1
∣
r
n
^
−
r
′
n
^
′
∣
+
q
′
∣
r
n
^
−
r
′
′
n
^
∣
=
1
r
∣
n
^
−
r
′
r
n
^
′
∣
+
q
′
r
′
′
∣
r
r
′
′
n
^
−
n
^
′
∣
=
0
r
=
a
\frac{1}{|r \hat n-r'\hat n'|}+\frac{q'}{|r \hat n-r''\hat n|} = \frac{1}{r|\hat n - \frac{r'}{r}\hat n'|}+\frac{q'}{r''| \frac{r}{r''}\hat n-\hat n'|}=0 \\ r=a
∣rn^−r′n^′∣1+∣rn^−r′′n^∣q′=r∣n^−rr′n^′∣1+r′′∣r′′rn^−n^′∣q′=0r=a
一种可行的解是
{
q
′
r
′
′
=
−
1
r
=
−
1
a
r
r
′
′
=
a
r
′
′
=
r
′
r
=
r
′
a
⇒
{
q
′
=
−
a
r
′
2
r
′
′
=
a
2
r
′
\begin{cases} \frac{q'}{r''}=-\frac{1}{r} = -\frac{1}{a} \\ \frac{r}{r''} = \frac{a}{r''}=\frac{r'}{r}=\frac{r'}{a} \end{cases} \Rightarrow \begin{cases} q' = -\frac{a}{r'^2} \\ r'' = \frac{a^2}{r'} \end{cases}
{r′′q′=−r1=−a1r′′r=r′′a=rr′=ar′⇒{q′=−r′2ar′′=r′a2
需要注意的是
r
⃗
′
\vec r'
r′的方向就是边界的一个外法线方向
n
^
′
\hat n'
n^′,测试电荷的位置
r
⃗
\vec r
r的方向也是边界的一个外法线方向
n
^
\hat n
n^,记这两个外法线方向夹角为
γ
\gamma
γ,则在球坐标中:
r
⃗
=
r
(
sin
θ
cos
ϕ
,
sin
θ
,
sin
ϕ
,
cos
θ
)
cos
γ
=
cos
θ
cos
θ
′
+
sin
θ
sin
θ
′
cos
(
ϕ
−
ϕ
′
)
\vec r = r(\sin \theta\cos \phi,\sin \theta,\sin \phi,\cos \theta) \\ \cos \gamma= \cos \theta \cos \theta'+\sin \theta \sin \theta' \cos (\phi-\phi')
r=r(sinθcosϕ,sinθ,sinϕ,cosθ)cosγ=cosθcosθ′+sinθsinθ′cos(ϕ−ϕ′)
现在我们就可以把Green函数在球坐标系下的表达式写出来了,
G
=
1
r
2
+
r
′
2
−
2
r
r
′
cos
γ
−
1
r
2
r
′
2
a
2
+
a
2
−
2
r
r
′
cos
γ
G =\frac{1}{\sqrt{r^2+r'^2-2rr'\cos \gamma}}-\frac{1}{\sqrt{\frac{r^2r'^2}{a^2}+a^2-2rr'\cos \gamma}}
G=r2+r′2−2rr′cosγ1−a2r2r′2+a2−2rr′cosγ1
Dirichlet问题的积分解:
Φ
(
r
⃗
)
=
∫
V
ρ
(
r
⃗
′
)
G
(
r
⃗
,
r
⃗
′
)
d
x
′
d
y
′
d
z
′
−
1
4
π
∮
S
(
V
)
Φ
(
r
⃗
′
)
∂
G
∂
n
d
S
\Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz'-\frac{1}{4\pi}\oint_{S(V)} \Phi(\vec r')\frac{\partial G}{\partial n}dS
Φ(r)=∫Vρ(r′)G(r,r′)dx′dy′dz′−4π1∮S(V)Φ(r′)∂n∂GdS
因为这个题目球的内部没有source,所以第一项为零,于是我们只需计算
∂
G
∂
n
=
∂
G
∂
r
′
=
−
r
′
−
r
cos
γ
(
r
2
+
r
′
2
−
2
r
r
′
cos
γ
)
3
/
2
+
r
2
r
′
a
2
−
r
cos
γ
(
r
2
r
′
2
a
2
+
a
2
−
2
r
r
′
cos
γ
)
3
/
2
∂
G
∂
n
∣
r
′
=
a
=
r
2
−
a
2
a
(
r
2
+
a
2
−
2
a
r
cos
γ
)
3
/
2
\frac{\partial G}{\partial n}=\frac{\partial G}{\partial r'}=-\frac{r'-r \cos \gamma}{(r^2+r'^2-2rr' \cos \gamma)^{3/2}}\\ + \frac{\frac{r^2r'}{a^2}-r\cos \gamma}{(\frac{r^2r'^2}{a^2}+a^2-2rr'\cos \gamma)^{3/2}} \\ \frac{\partial G}{\partial n}|_{r'=a} = \frac{r^2-a^2}{a(r^2+a^2-2ar\cos \gamma)^{3/2}}
∂n∂G=∂r′∂G=−(r2+r′2−2rr′cosγ)3/2r′−rcosγ+(a2r2r′2+a2−2rr′cosγ)3/2a2r2r′−rcosγ∂n∂G∣r′=a=a(r2+a2−2arcosγ)3/2r2−a2
因此结果为
Φ
(
r
,
θ
,
ϕ
)
=
−
1
4
π
∮
S
Φ
(
a
′
,
θ
′
ϕ
′
)
r
2
−
a
2
a
(
r
2
+
a
2
−
2
a
r
cos
γ
)
3
/
2
d
S
\Phi(r,\theta,\phi)=-\frac{1}{4 \pi}\oint_S \Phi(a',\theta'\phi')\frac{r^2-a^2}{a(r^2+a^2-2ar\cos \gamma)^{3/2}}dS
Φ(r,θ,ϕ)=−4π1∮SΦ(a′,θ′ϕ′)a(r2+a2−2arcosγ)3/2r2−a2dS
其中
d
S
=
a
2
sin
θ
d
θ
d
ϕ
dS = a^2\sin \theta d \theta d\phi
dS=a2sinθdθdϕ, 因此
Φ
(
r
,
θ
,
ϕ
)
=
−
1
4
π
∬
Φ
(
a
′
,
θ
′
ϕ
′
)
a
(
r
2
−
a
2
)
sin
θ
(
r
2
+
a
2
−
2
a
r
cos
γ
)
3
/
2
d
θ
d
ϕ
\Phi(r,\theta,\phi)=-\frac{1}{4 \pi}\iint \Phi(a',\theta'\phi')\frac{a(r^2-a^2)\sin \theta}{(r^2+a^2-2ar\cos \gamma)^{3/2}}d\theta d\phi
Φ(r,θ,ϕ)=−4π1∬Φ(a′,θ′ϕ′)(r2+a2−2arcosγ)3/2a(r2−a2)sinθdθdϕ