# UA PHYS515 电磁理论II 静电场问题5 用Green函数法求解interior Dirichlet问题的例子

### UA PHYS515 电磁理论II 静电场问题5 用Green函数法求解interior Dirichlet问题的例子

V = { r ⃗ : ∣ r ⃗ ∣ < R } V=\{\vec r:|\vec r| < R\} ，边界为 S = { r ⃗ : ∣ r ⃗ ∣ = R } S=\{\vec r:|\vec r|=R\} ，Dirichlet条件为 Φ ( r ⃗ ) = 0 , ∀ r ⃗ ∈ S \Phi(\vec r)=0,\forall \vec r \in S ；写出Green函数：
G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + F ( r ⃗ , r ⃗ ′ ) G(\vec r,\vec r')=\frac{1}{|\vec r - \vec r'|}+F(\vec r, \vec r')

G ( r ⃗ , r ⃗ ′ ) = 1 ∣ r ⃗ − r ⃗ ′ ∣ + q ′ ∣ r ⃗ − r ⃗ ′ ′ ∣ = 1 ∣ r n ^ − r ′ n ^ ′ ∣ + q ′ ∣ r n ^ − r ′ ′ n ^ ∣ G(\vec r, \vec r')=\frac{1}{|\vec r - \vec r'|}+\frac{q'}{|\vec r - \vec r''|} = \frac{1}{|r \hat n-r'\hat n'|}+\frac{q'}{|r \hat n-r''\hat n|}

1 ∣ r n ^ − r ′ n ^ ′ ∣ + q ′ ∣ r n ^ − r ′ ′ n ^ ∣ = 1 r ∣ n ^ − r ′ r n ^ ′ ∣ + q ′ r ′ ′ ∣ r r ′ ′ n ^ − n ^ ′ ∣ = 0 r = a \frac{1}{|r \hat n-r'\hat n'|}+\frac{q'}{|r \hat n-r''\hat n|} = \frac{1}{r|\hat n - \frac{r'}{r}\hat n'|}+\frac{q'}{r''| \frac{r}{r''}\hat n-\hat n'|}=0 \\ r=a

{ q ′ r ′ ′ = − 1 r = − 1 a r r ′ ′ = a r ′ ′ = r ′ r = r ′ a ⇒ { q ′ = − a r ′ 2 r ′ ′ = a 2 r ′ \begin{cases} \frac{q'}{r''}=-\frac{1}{r} = -\frac{1}{a} \\ \frac{r}{r''} = \frac{a}{r''}=\frac{r'}{r}=\frac{r'}{a} \end{cases} \Rightarrow \begin{cases} q' = -\frac{a}{r'^2} \\ r'' = \frac{a^2}{r'} \end{cases}

r ⃗ = r ( sin ⁡ θ cos ⁡ ϕ , sin ⁡ θ , sin ⁡ ϕ , cos ⁡ θ ) cos ⁡ γ = cos ⁡ θ cos ⁡ θ ′ + sin ⁡ θ sin ⁡ θ ′ cos ⁡ ( ϕ − ϕ ′ ) \vec r = r(\sin \theta\cos \phi,\sin \theta,\sin \phi,\cos \theta) \\ \cos \gamma= \cos \theta \cos \theta'+\sin \theta \sin \theta' \cos (\phi-\phi')

G = 1 r 2 + r ′ 2 − 2 r r ′ cos ⁡ γ − 1 r 2 r ′ 2 a 2 + a 2 − 2 r r ′ cos ⁡ γ G =\frac{1}{\sqrt{r^2+r'^2-2rr'\cos \gamma}}-\frac{1}{\sqrt{\frac{r^2r'^2}{a^2}+a^2-2rr'\cos \gamma}}

Dirichlet问题的积分解：
Φ ( r ⃗ ) = ∫ V ρ ( r ⃗ ′ ) G ( r ⃗ , r ⃗ ′ ) d x ′ d y ′ d z ′ − 1 4 π ∮ S ( V ) Φ ( r ⃗ ′ ) ∂ G ∂ n d S \Phi(\vec r) = \int_V \rho(\vec r')G(\vec r,\vec r')dx'dy'dz'-\frac{1}{4\pi}\oint_{S(V)} \Phi(\vec r')\frac{\partial G}{\partial n}dS

∂ G ∂ n = ∂ G ∂ r ′ = − r ′ − r cos ⁡ γ ( r 2 + r ′ 2 − 2 r r ′ cos ⁡ γ ) 3 / 2 + r 2 r ′ a 2 − r cos ⁡ γ ( r 2 r ′ 2 a 2 + a 2 − 2 r r ′ cos ⁡ γ ) 3 / 2 ∂ G ∂ n ∣ r ′ = a = r 2 − a 2 a ( r 2 + a 2 − 2 a r cos ⁡ γ ) 3 / 2 \frac{\partial G}{\partial n}=\frac{\partial G}{\partial r'}=-\frac{r'-r \cos \gamma}{(r^2+r'^2-2rr' \cos \gamma)^{3/2}}\\ + \frac{\frac{r^2r'}{a^2}-r\cos \gamma}{(\frac{r^2r'^2}{a^2}+a^2-2rr'\cos \gamma)^{3/2}} \\ \frac{\partial G}{\partial n}|_{r'=a} = \frac{r^2-a^2}{a(r^2+a^2-2ar\cos \gamma)^{3/2}}

Φ ( r , θ , ϕ ) = − 1 4 π ∮ S Φ ( a ′ , θ ′ ϕ ′ ) r 2 − a 2 a ( r 2 + a 2 − 2 a r cos ⁡ γ ) 3 / 2 d S \Phi(r,\theta,\phi)=-\frac{1}{4 \pi}\oint_S \Phi(a',\theta'\phi')\frac{r^2-a^2}{a(r^2+a^2-2ar\cos \gamma)^{3/2}}dS

Φ ( r , θ , ϕ ) = − 1 4 π ∬ Φ ( a ′ , θ ′ ϕ ′ ) a ( r 2 − a 2 ) sin ⁡ θ ( r 2 + a 2 − 2 a r cos ⁡ γ ) 3 / 2 d θ d ϕ \Phi(r,\theta,\phi)=-\frac{1}{4 \pi}\iint \Phi(a',\theta'\phi')\frac{a(r^2-a^2)\sin \theta}{(r^2+a^2-2ar\cos \gamma)^{3/2}}d\theta d\phi

• 点赞
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 打赏

打赏

一个不愿透露姓名的孩子

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 举报
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文

08-26 2320
09-03 4297

05-27 3万+
03-11 5424
07-26 1466
08-04 2376
12-30 48
10-15 9653
01-17 5225
08-15 1795