方差分析

方差分析

方差分析(Analysis of variance, ANOVA) :主要研究分类变量作为自变量时,对因变量的影响是否是显著的。方差分析主要通过F检验来进行效果测评。
方差分析实质:检验多个水平的均值是否有显著差异。如果各个水平的观察值方差差异太大,只检验均值之间的差异就没有意义,所以要进行方差齐性检验。
注意:方差齐性检验对数据中的离群点非常敏感。

均衡设计:观测数相等的设计
非均衡设计:观测数不相等的设计
单因素方差分析:只有一个类别型变量的统计设计
因素方差分析设计:包含2个以上因子的设计,又称为双因素方差分析
当包含3个因子时,又称作三因素方差分析
混合模型方差分析:因子设计包含组内和组间因子

正态性检验的使用场合:在模型假设时,一般情况假设变量服从正态分布
正态分布检验方法:QQ图和K-S检验( Kolmogorov–Smirnov 检验)
QQ图
K-S检验:用来检验数据是否符合某种分布的一种非参数检验。
用R语言实现K-S检验,若结果中的p值大于0.05,则判定数据符合正态分布。
Anderson–Darling检验:用来检验给定的样本是否来自于某个确定的概率分布的统计检验方法。用R语言实现Anderson–Darling检验,若结果中的p值大于0.05,则判定数据符合正态分布。
Shapiro-Wilk检验:适用于小样本的正态性检验
Lilliefor test检验:是基于Kolmogorov-Smirnov test的一种正态性检验。

展开阅读全文

Git 实用技巧

11-24
这几年越来越多的开发团队使用了Git,掌握Git的使用已经越来越重要,已经是一个开发者必备的一项技能;但很多人在刚开始学习Git的时候会遇到很多疑问,比如之前使用过SVN的开发者想不通Git提交代码为什么需要先commit然后再去push,而不是一条命令一次性搞定; 更多的开发者对Git已经入门,不过在遇到一些代码冲突、需要恢复Git代码时候就不知所措,这个时候哪些对 Git掌握得比较好的少数人,就像团队中的神一样,在队友遇到 Git 相关的问题的时候用各种流利的操作来帮助队友于水火。 我去年刚加入新团队,发现一些同事对Git的常规操作没太大问题,但对Git的理解还是比较生疏,比如说分支和分支之间的关联关系、合并代码时候的冲突解决、提交代码前未拉取新代码导致冲突问题的处理等,我在协助处理这些问题的时候也记录各种问题的解决办法,希望整理后通过教程帮助到更多对Git操作进阶的开发者。 本期教程学习方法分为“掌握基础——稳步进阶——熟悉协作”三个层次。从掌握基础的 Git的推送和拉取开始,以案例进行演示,分析每一个步骤的操作方式和原理,从理解Git 工具的操作到学会代码存储结构、演示不同场景下Git遇到问题的不同处理方案。循序渐进让同学们掌握Git工具在团队协作中的整体协作流程。 在教程中会通过大量案例进行分析,案例会模拟在工作中遇到的问题,从最基础的代码提交和拉取、代码冲突解决、代码仓库的数据维护、Git服务端搭建等。为了让同学们容易理解,对Git简单易懂,文章中详细记录了详细的操作步骤,提供大量演示截图和解析。在教程的最后部分,会从提升团队整体效率的角度对Git工具进行讲解,包括规范操作、Gitlab的搭建、钩子事件的应用等。 为了让同学们可以利用碎片化时间来灵活学习,在教程文章中大程度降低了上下文的依赖,让大家可以在工作之余进行学习与实战,并同时掌握里面涉及的Git不常见操作的相关知识,理解Git工具在工作遇到的问题解决思路和方法,相信一定会对大家的前端技能进阶大有帮助。
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值