CLIP 模型中的 context_length 设置为 77,表示每个输入句子会被 tokenized 成最多 77 个 token。这个 77 并不是直接对应到 77 个单词,因为一个单词可能会被拆分成多个 token,特别是对于较长的或不常见的单词。
在自然语言处理中,token 通常指的是模型在处理文本时的最小单位,可以是单个词,也可以是词的一部分或多个词的组合。这是因为 CLIP 模型使用了 Byte-Pair Encoding (BPE) 分词器,这种方法会将常见的词作为单个 token,但会把不常见的词拆分成多个 token。
实际例子
为了更好地理解,我们来看一个具体的例子:
import clip
# 加载模型
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device)
# 示例句子
text = "a quick brown fox jumps over the lazy dog."
# 对句子进行 tokenization
tokenized_text = clip.tokenize([text])
print(tokenized_text)
print(tokenized_text.shape)
在这个例子中,我们对句子 "a quick brown fox jumps over the lazy dog." 进行了 tokenization。让我们看看它的输出:
tensor([[49406, 320, 1125, 2387, 539, 1906, 315, 262, 682, 1377,
269, 49407, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0]])
torch.Size([1, 77])
在这个例子中,句子被转换成了 77 个 token ID,其中包含了句子的 token ID 和填充的零。句子的 token 包括起始和结束的特殊 token (49406 和 49407),剩余的空位用 0 进行填充。
可以看到,虽然句子有 9 个单词,但经过 tokenization 后得到了 11 个 token(包括起始和结束 token),加上填充后的长度为 77。
总结
context_length设置为 77 表示模型的输入长度限制为 77 个 token。- 77 个 token 不等同于 77 个单词,因为一个单词可能会被拆分成多个 token。
- 实际的单词数量会少于 77 个,具体取决于句子的复杂度和分词方式。
- 通常情况下,77 个 token 可以容纳大约 70 个左右的单词,这取决于句子的内容和复杂度。
为了在实际应用中得到精确的单词数量与 token 数量的关系,可以对输入文本进行 tokenization 并观察其输出。通过这种方式,可以更好地理解模型的输入限制。

586

被折叠的 条评论
为什么被折叠?



