- SVG 生成系列论文(一) 和 SVG 生成系列论文(二) 分别介绍了 StarVector 的大致背景和详细的模型细节。
- SVG 生成系列论文(三)和 SVG 生成系列论文(四)则分别介绍实验、数据集和数据增强细节。
- SVG 生成系列论文(五)介绍了从光栅图像(如 PNG、JPG 格式)转换为矢量图形(如 SVG、EPS 格式)的关键技术-像素预过滤(pixel prefiltering), Diffvg 这篇论文也是 SVG 生成与编辑领域中 “基于优化”方法的开创性研究。
- SVG 生成系列论文(六) 和 SVG 生成系列论文(七) 简要介绍了 IconShop 的背景、应用和部分细节。
- SVG 生成系列论文(八)则介绍了模型架构和具体的训练技巧。SVG 生成系列论文(九)详细地介绍了 iconshop 的推理代码。

研究主页:https://intchous.github.io/T2V-NPR/
-
背景与挑战
背景:在数字艺术领域,矢量图形因其可缩放性和分层特性深受设计师喜爱。然而,创建和编辑高质量的矢量图形需要专业知识和大量时间。本文介绍了一种新颖的神经路径表示方法,旨在通过文本到矢量(Text to vector, T2V)生成技术,使矢量图形的创建更加便捷。
挑战:现有的T2V方法通常直接优化矢量图形路径的控制点,但由于缺乏几何约束,常常导致路径相交或锯齿状的效果。 -
创新方法
(1)引入了一种新的 T2V 生成管道,该管道通过优化局部神经路径表示(local neural path representation)实现高质量矢量图形生成。这种方法不仅保持了生成SVG图形的表现力,还加入了几何约束。
(2)设计了一个双分支VAE,从路径的序列和图像模态中学习路径的潜在表示(神经路径表示)。序列模态有助于学习几何属性,而图像模态则有助于学习渲染特性。如下图(a)所示。
(3)开发了一种两阶段文本驱动的神经路径优化方法,以指导创建具有有效和逐层SVG路径的矢量图形。第一阶段使用预训练的文本到图像扩散模型,通过变分分数蒸馏(Variational Score Distillation,VSD)过程生成初始SVG。第二阶段采用路径简化和分层优化策略,对初始生成的SVG进行进一步优化,以实现更清晰的几何和结构。如下图(b)所示。

- 实验与应用
通过广泛的实验,验证了该方法在生成高质量和多样化矢量图形方面的有效性。的方法不仅适用于T2V生成,还支持矢量图形定制、图像到SVG生成和SVG动画等多种应用。
具体应用如下:
(1)具有可调细节级别的SVG生成

(2)不同风格的文本到矢量图形生成

(3)SVG 定制化生成

(4)像素图像到矢量图形

(5)SVG 动画


1161

被折叠的 条评论
为什么被折叠?



