【SVG 生成系列论文(十)】分层的矢量路径生成 Text-to-Vector Generation with Neural Path Representation

37 篇文章 0 订阅
  1. 背景与挑战
    背景:在数字艺术领域,矢量图形因其可缩放性和分层特性深受设计师喜爱。然而,创建和编辑高质量的矢量图形需要专业知识和大量时间。本文介绍了一种新颖的神经路径表示方法,旨在通过文本到矢量(Text to vector, T2V)生成技术,使矢量图形的创建更加便捷。
    挑战:现有的T2V方法通常直接优化矢量图形路径的控制点,但由于缺乏几何约束,常常导致路径相交或锯齿状的效果。

  2. 创新方法
    (1)引入了一种新的 T2V 生成管道,该管道通过优化局部神经路径表示(local neural path representation)实现高质量矢量图形生成。这种方法不仅保持了生成SVG图形的表现力,还加入了几何约束。
    (2)设计了一个双分支VAE,从路径的序列和图像模态中学习路径的潜在表示(神经路径表示)。序列模态有助于学习几何属性,而图像模态则有助于学习渲染特性。如下图(a)所示。
    (3)开发了一种两阶段文本驱动的神经路径优化方法,以指导创建具有有效和逐层SVG路径的矢量图形。第一阶段使用预训练的文本到图像扩散模型,通过变分分数蒸馏(Variational Score Distillation,VSD)过程生成初始SVG。第二阶段采用路径简化和分层优化策略,对初始生成的SVG进行进一步优化,以实现更清晰的几何和结构。如下图(b)所示。

在这里插入图片描述

  1. 实验与应用
    通过广泛的实验,验证了该方法在生成高质量和多样化矢量图形方面的有效性。的方法不仅适用于T2V生成,还支持矢量图形定制图像到SVG生成SVG动画等多种应用。
    具体应用如下:

(1)具有可调细节级别的SVG生成
在这里插入图片描述
(2)不同风格的文本到矢量图形生成
在这里插入图片描述
(3)SVG 定制化生成
在这里插入图片描述
(4)像素图像到矢量图形
在这里插入图片描述
(5)SVG 动画
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值