LLM
文章平均质量分 84
多恩Stone
聚焦时尚设计领域的高可用 AIGC,现于香港理工-人工智能设计研究所搬砖
展开
-
【HuggingFace 如何上传数据集】快速上传图片、文本等各种格式的数据
如果只是为了上传备份、或者迁移数据,可以不用 huggingface dataset,而是直接使用 HfApi()来上传文件夹。原创 2024-10-17 15:54:43 · 1252 阅读 · 0 评论 -
【分布式训练(3)】accelerator + deepspeed debug 报错 “Timed out waiting for debuggee to spawn“ 解决方法✅
用以上 launch.json 对 accelerator + deepspeed 的训练代码进行 debug,结果完全无法连接。灵感来源:https://blog.csdn.net/qq_19716143/article/details/136035839。原创 2024-10-14 21:27:57 · 548 阅读 · 0 评论 -
【扩散模型(十)】IP-Adapter 源码详解 4 - 训练细节、具体训了哪些层?
IP-Adapter 训的就是 image_proj_model(或者对于 plus 来说是 resampler) 和 adapter_modules 两块。在 adapter_modules 中,实际只训了 IPAttnProcessor2_0 的 to_k_ip 和 to_v_ip。adapter_modules 是在每个有含有 cross attention 的 unet block 里进行的替换,如下图所示。原创 2024-09-06 18:25:20 · 1181 阅读 · 2 评论 -
【扩散模型(八)】Stable Diffusion 3 diffusers 源码详解2 - DiT 与 MMDiT 相关代码(下)
中的 JointTransformerBlock 类,其中 hidden_states (noisy latent)和 encoder_hidden_states (text prompt) 分别通过 norm1 和 norm1_context 后,进入了第四层。transformer_sd3.py 中的 forward 函数中以下片段进入 for 循环,如果不训练 backbone的话,那么就是从 else 分支进入 block 中。下方画出的图片和对应代码即为文图融合的核心关键,在原论文中。原创 2024-08-26 10:34:27 · 1805 阅读 · 2 评论 -
【炼丹经验积累(一)】梯度消失 学习率自动调节 附代码
(1)先 warm up,在前 1/10 个训练步中,学习率从 0 调节到设定的 1e-5。自动调节学习率的方式很多,本文先从最简单地尝试起来,即“线性调节”(2)再衰减,在后续的训练步中,线性地从 1e-5 逐渐减为 0。原创 2024-08-22 15:03:18 · 758 阅读 · 0 评论 -
【 torch.jit.script 踩坑记录】‘method_descriptor‘ object has no attribute ‘__globals__‘ 暂未解决
AttributeError 是一种异常,当你试图访问或操作一个对象不存在的属性时会发生。在 Python 中,一切皆对象,对象具有定义其行为和属性的属性。当你试图访问一个不存在的属性时,Python 会引发 AttributeError 来告知你出了问题。原创 2024-06-06 11:38:52 · 954 阅读 · 0 评论 -
【SVG 生成系列论文(四)】对 SVG 如何做数据增强?StarVector: Generating Scalable Vector Graphics Code from Images
本篇则详细介绍 StarVector 如何制作数据集的,以及文章提到的两个 SVG 相关工具。原创 2024-05-10 12:00:38 · 931 阅读 · 0 评论 -
【SVG 生成系列论文(三)】如何用 LLM 来生成 SVG 代码,StarVector: Generating Scalable Vector Graphics Code from Images
本篇则重点介绍数据和实验部分。StarVector 一文中提出了一个用于验证位图到矢量图生成的数据集SVGBench,其主要来源于 Glypazzn[1],DeepSVG[2],TheStack[3] 三个工作。如下图所示:对于不同的 Dataset (SVG-Fonts、Icons、Emoji和Stack)均拆为了训练、验证和测试集。SVG 简化(Simplification):由于 DeepSVG[2] 需要对其输入的SVG进行简化。原创 2024-05-09 22:03:19 · 1511 阅读 · 0 评论 -
【SVG 生成系列论文(二)】用 LLM 来生成 SVG 代码,StarVector: Generating Scalable Vector Graphics Code from Images
StarVector 的模型可以分为两大块:(1)Image Encoder and Visual Tokens 和 (2)CodeLLM(StarCode)原创 2024-05-09 14:05:37 · 1094 阅读 · 0 评论 -
【SVG 生成系列论文(一)】用 LLM 来生成 SVG 代码,StarVector: Generating Scalable Vector Graphics Code from Images
背景:可伸缩矢量图形(Scalable Vector Graphics,SVG)已经成为现代图像渲染应用程序中不可或缺的一部分,因为它们具有。方法:StarVector 是一种多模态SVG生成模型,它有效地集成了代码生成大型语言模型(CodeLLMs)和视觉模型。从以下对比中可以看出,StarVector 和 GPT-4 V 有类似的 SVG 生成功能。存在的问题:现有的使用深度学习进行SVG建模的方法通常难以生成复杂的SVG,并且仅限于需要。任务: 输入一张位图,输出一张位图对应的 SVG 矢量图。原创 2024-05-08 22:05:27 · 1162 阅读 · 0 评论
分享