算法是有限条操作指令的集合,这些指令确定了解决问题的方法与步骤。能够对符合一定规范的输入,在有限时间内获得所要求的输出。
求两个正整数的最大公因子

算法思想:E(m,n)
第一步:求余数 r= m mod n;
第二步:判断 若 r = 0 算法结束,n即为所求;否则进入第三步。
第三步:赋值 m=n,n=r;返回第一步
解释:由于m,n与余数r之间有关系式:m=q*n+r (r<n)
其中q为商,则计算 m与n的最大公约数可以转换成计算 n与r的最大公约数;因为m与n的最大公约数比能整除r;反之,n和r的最大公约数必能整除m。
伪代码:
算法:GCD(m,n)
/*使用欧几里得算法计算m,n的最大公约数*/
/*输入:两个

本文记录了算法设计与分析的学习笔记,涉及求两个正整数的最大公因子的欧几里得算法,十进制转二进制的转换方法,以及证明了n个顶点二叉树高度的不等式:⌊logn⌋≤h≤n-1。通过伪代码详细阐述了每个算法步骤。
最低0.47元/天 解锁文章
877

被折叠的 条评论
为什么被折叠?



