2. 求曲线
y
=
ln
sec
x
y=\ln \sec x
y=lnsecx 在点
(
x
,
y
)
(x, y)
(x,y) 处的曲率及曲率半径.
3. 求抛物线
y
=
x
2
−
4
x
+
3
y=x^2-4 x+3
y=x2−4x+3 在其顶点处的曲率及曲率半径.
4. 求曲线
x
=
a
cos
3
t
,
y
=
a
sin
3
t
x=a \cos ^3 t, y=a \sin ^3 t
x=acos3t,y=asin3t 在
t
=
t
0
t=t_0
t=t0 相应的点处的曲率.
5. 对数曲线
y
=
ln
x
y=\ln x
y=lnx 上哪一点处的曲率半径最小? 求出该点处的曲率半径.
6. 证明曲线
y
=
a
c
h
x
a
y=a \mathrm{ch} \frac{x}{a}
y=achax 在点
(
x
,
y
)
(x, y)
(x,y) 处的曲率半径为
y
2
a
\frac{y^2}{a}
ay2.
7. 一飞机沿拋物线路径
y
=
x
2
10000
y=\frac{x^2}{10000}
y=10000x2 (
y
y
y 轴钔直向上, 单位为
m
\mathrm{m}
m ) 做俯冲飞行. 在坐标原点
O
O
O 处飞机的速度为
v
=
200
m
/
s
v=200 \mathrm{~m} / \mathrm{s}
v=200m/s. 飞行员体重
G
=
70
k
g
G=70 \mathrm{~kg}
G=70kg. 求飞机俯冲至最低点即原点
O
O
O 处时坐椅 对飞行员的反力.
8. 汽车连同载重共
5
t
5 \mathrm{t}
5t, 在抛物线拱桥上行驶, 速度为
21.6
k
m
/
h
21.6 \mathrm{~km} / \mathrm{h}
21.6km/h, 桥的跨度为
10
m
10 \mathrm{~m}
10m, 拱的 矢高为
0.25
m
0.25 \mathrm{~m}
0.25m (如下图). 求汽车越过桥顶时对桥的压力.
9. 求曲线
y
=
ln
x
y=\ln x
y=lnx 在与
x
x
x 轴交点处的曲率圆方程.
10. 求曲线
y
=
tan
x
y=\tan x
y=tanx 在点
(
π
4
,
1
)
\left(\frac{\pi}{4}, 1\right)
(4π,1) 处的曲率圆方程.